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Root systems

Let V = Rn, u, α ∈ V and ( , ) the standard bilinear form in V .

Definition

A reflection is a linear operator sα on V defined by

u 7→ sαu = u − 2
(u, α)

(α, α)
α.

It fixes a subspace of V of codimension 1, called a mirror
(reflecting hyperplane). A finite group generated by reflections will
be called finite reflection group and will be denoted by W ⊂ O(V ).
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Definition

Let R be a finite set of non-zero vectors in V s.t

1 R ∩ Rα = {−α, α},
2 sαR = R,

∀α ∈ R. The set R is called a root system with associated
reflection group W = 〈sα|α ∈ R〉.

Note that W is necessarily finite in this case.

Definition

Let R+ ⊂ R. We call R+ a positive root system if

for any α ∈ R exactly one of α, or −α is in R+, and

for any α 6= β ∈ R+ s.t α + β ∈ R then α + β ∈ R+.
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The symmetric group

W = Sn, the symmetric group:

Let εi , i = 1, . . . , n be the standard orthonormal basis in V ,

W acts on V by permutations of the standard basis,

R = {±(εi − εj)}, 1 ≤ i < j ≤ n.

R+ = {εi − εj}, 1 ≤ i < j ≤ n.

It fixes pointwise the line L = {Rβ}, β = ε1 + · · ·+ εn. Hence, we
usually denote W by An−1.
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Classification-Coxeter ’35

Coxeter diagrams of (irred.) finite Coxeter groups/ Classical series

An, (n ≥ 1):

Bn, (n ≥ 2): 4

Dn, (n ≥ 4):

I2(m), (m ≥ 5): m

Code for graphs- B. McKay
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Coxeter diagrams of (irred.) finite Coxeter groups / Exceptional
series

E6:

E7:

E8:

H3: 5

H4: 5

F4: 4
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Frobenius algebras

Definition

An algebra (A, ◦, <,>) over C is called Frobenius if

it is commutative, associative, with unity e,

<,>: A×A → C is a non-degenerate bilinear form s.t

< a ◦ b, c >=< a, b ◦ c > ∀a, b, c ∈ A.
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Frobenius manifolds

Definition (Dubrovin ’94)

(M, ◦, e, <,>,E ) is a Frobenius manifold if each tangent space is
a Frobenius algebra,TtM = At varying smoothly over M s.t

<,> is a flat metric (Complex valued quadratic form),

∇e = 0,

the tensor (∇Zc)(X ,Y ,W ) is totally symmetric for all
X ,Y ,Z ,W ∈ TM with c(X ,Y ,W ) = 〈X ◦ Y ,W 〉,
∃ a linear vector field E i.e, ∇(∇E ) = 0 s.t

[E , e] = c1e, LE <,>= c2 <,>, c1, c2 ∈ C.
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WDVV

In fact, a geometric reformulation of the WDVV equations.

flat metric <,> implies the existence of flat coordinates
t1, . . . , tn and one may choose e = ∂1. Then

c1αβ = 〈∂α, ∂β〉 ≡ ηαβ and hence cαβγ(t) = ηαεcεβγ(t)

with ηαε = (ηαε)
−1, are the structure constants of At .

symmetry of c and ∇c implies the local existence of a
function F = F (t1, . . . , tn) s.t cαβγ = ∂α∂β∂γF .

assoc. of At then implies WDVV equations:

cαβγη
γεcεµν = cαµγη

γεcεβν .

F is called prepotential or free energy.
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Orbit spaces

Let V = Cn, g the W -invariant standard constant metric
given by

g(ei , ej) = δij ,

where ei , i = 1, . . . , n is the standard basis in V and let
{x i}ni=1 be the corresponding orthogonal coordinates.

Let rankW = n. W acts in V by orthogonal transformations
s.t V is the complexified reflection representation of W .

Let y1(x), . . . , yn(x) be a hom. basis in the ring of invariant
polynomials
S(V ∗)W = C[x1, . . . , xn]W = C[x ]W = C[y1, . . . , yn].

Let di = deg y i , i = 1, . . . , n and fix the ordering

h = d1 > · · · ≥ dn = 2.

We call h the Coxeter number of W .
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The orbit space
Saito metric

y1, . . . , yn are coordinates on MW = V /W ∼= Cn,

x1, . . . , xn are local coordinates on MW \ Σ, where Σ ⊂ MW

consists of irregular orbits, i.e orbits consisting of less than
|W | points.

Let gαβ be the corresponding contravariant metric. g is
defined on MW \ Σ, det(gαβ(y)) = 0 on Σ.
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The orbit space
Saito metric

Definition (K.Saito et. al ’80, B. Dubrovin ’94)

The metric ηαβ = Legαβ is called the Saito metric, it is defined up
to proportionality and it is flat, where e = ∂y1 .

There exists a distinguished basis t i ∈ C[x ]W , (1 ≤ i ≤ n) s.t η is
constant and antidiagonal,

ηαβ = δn+1,α+β.

Such coordinates are called Saito polynomials. They constitute
examples of polynomial twisted periods (M. Feigin, A. Silantyev
’12)

Example: W = An, Saito polynomials take the form

ts = Resz=∞

n+1∏
j=1

(z − xj)
ν |∑ xj=0 ,

with ν = s
h , s = 1, . . . , n.
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The orbit space
Saito metric

F (t) is defined (up to quadratic terms) by

gαβ(t) =
(dα + dβ − 2)

h
ηαληβµ∂λ∂µF (t).

the structure constants cγαβ(t) = ηγε∂α∂β∂εF (t) are uniquely
defined.

Theorem (Dubrovin’94)

There exists a polynomial Frobenius structure on MW with the
metric η =<,> and

the Euler vector field E =
∑n

i=1
1
hdiy

i∂y i ,

the identity vector field e := ∂y1 .
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The orbit space
Saito metric

Proposition

The determinant of the covariant Saito metric η in the x
coordinates is given as

det η(x) = c
∏
α∈R+

g(α, x)2, c ∈ C×.
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Coxeter discriminant

Definition (Strachan ’04)

Let M be a Frobenius manifold. A natural submanifold N of M is
a submanifold N ⊂ M s.t

TN ◦ TN ⊂ TN,

Ex ∈ TN ∀x ∈ TN.

Definition

Σ is called a Coxeter discriminant. It is the image of the union of
the mirrors under the natural projection map

π : V → MW .

A stratum π(D) ⊂ Σ is the image of the intersection subspace
D = ∩β∈BΠβ, where B ⊂ R, Πβ = {x ∈ V |g(x , β) = 0}.
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Example: There are 5 strata in A4, of type A3, A2 × A1, A2, A2
1,

A1.

Discriminant strata are shown to be natural submanifolds of
the Frobenius manifold MW (Strachan ’04; Feigin, Veselov
’07, AFS’17)

π : D → π(D) is a diffeomorphism near generic point x0 ∈ D.

The Saito metric on MW induces a metric on π(D) which is
naturally given as the restriction of η to the stratum. Let us
denote it by ηD .

The linear coordinates x i give rise to coordinates on the
stratum D and on π(D). These are flat coordinates for the
restricted metric g on the stratum D. We denote this metric
by gD .
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We are interested in answering the following:

Question

How does det ηD look in the flat coordinates of gD on discriminant
strata?

Let us fix some notation:

Let L = {γ1, . . . , γk} ⊂ R, 1 ≤ k ≤ n and consider
D = ∩γ∈LΠγ s.t dimD = n − k .

For any β ∈ R \ 〈L〉, L̂ = L ∪ {β}, define Uβ = 〈L̂〉 ∩ R.

The set Uβ is a root system and admits the decomposition

Uβ =

p⊔
i=1

Ri , (1)

where {Ri}pi=1 are irreducible root systems.
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Theorem

The determinant of ηD on D is proportional to the product of
linear factors ∏

l∈A
gD(l , x)ml , ml ∈ N,

where A is a collection of non-proportional vectors on D.
Furthermore, each l ∈ A has the form βD for some β ∈ R \ 〈L〉,
where βD is the orthogonal projection of β on D.

The multiplicity
ml equals the Coxeter number of the root system Rq from the
decomposition (1), such that β ∈ Rq.
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Coxeter group, W = A4

Example

Consider a stratum of type A2 in A4, let D = {x1 = x2 = x3}.
Coordinates on D are chosen as: ξ0 = x1 = x2 = x3, ξ1 = x4,
ξ2 = x5. Then,

det ηD = c(ξ0 − ξ1)4(ξ0 − ξ2)4(ξ1 − ξ2)2.

Q: How does this match the statement of the Theorem?
1 β = e3 − e4, Uβ = 〈e1 − e2, e2 − e3, β〉 ∩ R ∼= A3, h(A3) = 4,

2 β = e4 − e5, Uβ = 〈e1 − e2, e2 − e3, β〉 ∩ R ∼= A2 t A1,
β ∈ A1, h(A1) = 2,

3 β = e3 − e5, Uβ = 〈e1 − e2, e2 − e3, β〉 ∩ R ∼= A3, h(A3) = 4,

4 No other factors in det ηD , e.g (e2 − e4)D = (e3 − e4)D etc.
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Strata in type AN

An arbitrary l-dimensional stratum D ⊂ V has the form (k ≤ l):

x1 = . . . = xm0 = ξ0,

xm0+1 = . . . = xm0+m1 = ξ1

...

x∑k−1
i=0 mi+1 = . . . = x∑k

i=0 mi
= ξk .

Coordinates on D: ξ0, . . . , ξl , where ξi = xi , i = k + 1, . . . , l .
Then,

det ηD = c
∏

06i<j6l

(ξi − ξj)mi+mj

where c = (−1)
∑l

i=1 imi (N + 1)−N
∏l

a=1 m
2
a

∏l
a=0 m

ma−1
a .
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Proof of the Theorem ?

For classical series we use Landau-Ginzburg superpotential
description of the Frobenius structures on the discriminant strata.
In type A this superpotential on the stratum D is

λ(p) =
n∏

i=0

(p − ξi )mi , mi ∈ N.

The Saito metric and multiplication are:

η(∂i , ∂j) =
∑

ps :λ′ (ps)=0

res|p=ps

∂i (λ)∂j(λ)

λ′(p)
dp

η(∂i ◦ ∂j , ∂k) =
∑

ps :λ′ (ps)=0

res|p=ps

∂i (λ)∂j(λ)∂k(λ)

λ′(p)
dp,

For exceptional series, proof relies heavily on the geometry of root
systems.
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Thank you for your attention!
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