Saito metric and determinant on Coxeter discriminant strata

Georgios Antoniou

joint work with M. Feigin and I. Strachan

University of Glasgow

School of Mathematics and Statistics

Supersymmetry in Integrable Systems, Dubna August 14, 2018

Overview

- Finite Coxeter groups
 - Main Definitions
 - An example
 - Classification
- 2 Frobenius structures
 - Frobenius algebras and manifolds
 - Witten-Dijkgraaf-Verlinde-Verlinde equations
- 3 Frobenius structures on the orbit spaces
 - The orbit space
 - Saito metric
- 4 Saito determinant on Coxeter discriminant strata
 - A question
 - An answer
 - An example

Frobenius structures Frobenius structures on the orbit spaces Saito determinant on Coxeter discriminant strata

Root systems

Main Definitions An example Classification

Let $V = \mathbb{R}^n$, $u, \alpha \in V$ and (,) the standard bilinear form in V.

Definition

A reflection is a linear operator s_{α} on V defined by

$$u \mapsto s_{\alpha}u = u - 2\frac{(u,\alpha)}{(\alpha,\alpha)}\alpha.$$

It fixes a subspace of V of codimension 1, called a mirror (reflecting hyperplane). A **finite** group generated by reflections will be called *finite reflection group* and will be denoted by $W \subset O(V)$.

Main Definitions An example Classification

Definition

Let R be a finite set of non-zero vectors in V s.t

$$R \cap \mathbb{R}\alpha = \{-\alpha, \alpha\},$$

 $\forall \alpha \in R$. The set R is called a root system with associated reflection group $W = \langle s_{\alpha} | \alpha \in R \rangle$.

Note that W is necessarily finite in this case.

Main Definitions An example Classification

Definition

Let R be a finite set of non-zero vectors in V s.t

$$R \cap \mathbb{R}\alpha = \{-\alpha, \alpha\},$$

$$s_{\alpha}R = R,$$

 $\forall \alpha \in R$. The set R is called a root system with associated reflection group $W = \langle s_{\alpha} | \alpha \in R \rangle$.

Note that W is necessarily finite in this case.

Definition

Let $R_+ \subset R$. We call R_+ a positive root system if

- for any $\alpha \in R$ exactly one of α , or $-\alpha$ is in R_+ , and
- for any $\alpha \neq \beta \in R_+$ s.t $\alpha + \beta \in R$ then $\alpha + \beta \in R_+$.

Frobenius structures Frobenius structures on the orbit spaces Saito determinant on Coxeter discriminant strata Main Definition: An example Classification

The symmetric group

- $W = S_n$, the symmetric group:
 - Let ϵ_i , i = 1, ..., n be the standard orthonormal basis in V,
 - W acts on V by permutations of the standard basis,

Frobenius structures Frobenius structures on the orbit spaces Saito determinant on Coxeter discriminant strata Main Definitions An example Classification

The symmetric group

 $W = S_n$, the symmetric group:

- Let ϵ_i , i = 1, ..., n be the standard orthonormal basis in V,
- W acts on V by permutations of the standard basis,
- $R = \{\pm (\epsilon_i \epsilon_j)\}, \quad 1 \le i < j \le n.$
- $R_+ = \{\epsilon_i \epsilon_j\}, \quad 1 \le i < j \le n.$

Frobenius structures Frobenius structures on the orbit spaces Saito determinant on Coxeter discriminant strata Main Definitions An example Classification

The symmetric group

 $W = S_n$, the symmetric group:

- Let ϵ_i , i = 1, ..., n be the standard orthonormal basis in V,
- W acts on V by permutations of the standard basis,
- $R = \{\pm (\epsilon_i \epsilon_j)\}, \quad 1 \le i < j \le n.$
- $R_+ = \{\epsilon_i \epsilon_j\}, \quad 1 \le i < j \le n.$

It fixes pointwise the line $L = \{\mathbb{R}\beta\}$, $\beta = \epsilon_1 + \cdots + \epsilon_n$. Hence, we usually denote W by A_{n-1} .

Frobenius structures Frobenius structures on the orbit spaces Saito determinant on Coxeter discriminant strata Main Definitions An example Classification

Classification-Coxeter '35

Code for graphs- B. McKay

Frobenius structures Frobenius structures on the orbit spaces Saito determinant on Coxeter discriminant strata Main Definitions An example Classification

Classification-Coxeter '35

Coxeter diagrams of (irred.) finite Coxeter groups / Exceptional series

0 / 40

Frobenius algebras and manifolds Witten-Dijkgraaf-Verlinde-Verlinde equations

Frobenius algebras

Definition

An algebra $(\mathcal{A}, \circ, <, >)$ over $\mathbb C$ is called Frobenius if

- it is commutative, associative, with unity e,
- $\bullet\ <,>:\mathcal{A}\times\mathcal{A}\rightarrow\mathbb{C}$ is a non-degenerate bilinear form s.t

 $< a \circ b, c > = < a, b \circ c > \quad \forall a, b, c \in A.$

Frobenius algebras and manifolds Witten-Dijkgraaf-Verlinde-Verlinde equations

Frobenius manifolds

Definition (Dubrovin '94)

 $(M, \circ, e, <, >, E)$ is a Frobenius manifold if each tangent space is a Frobenius algebra, $T_t M = A_t$ varying smoothly over M s.t

• <,> is a flat metric (Complex valued quadratic form),

•
$$\nabla e = 0$$
,

- the tensor $(\nabla_Z c)(X, Y, W)$ is totally symmetric for all $X, Y, Z, W \in TM$ with $c(X, Y, W) = \langle X \circ Y, W \rangle$,
- \exists a linear vector field *E* i.e, $\nabla(\nabla E) = 0$ s.t

$$[E, e] = c_1 e, \quad \mathcal{L}_E <, >= c_2 <, >, \quad c_1, c_2 \in \mathbb{C}.$$

Frobenius algebras and manifolds Witten-Dijkgraaf-Verlinde-Verlinde equations

WDVV

In fact, a geometric reformulation of the $\boldsymbol{W}\boldsymbol{D}\boldsymbol{V}\boldsymbol{V}$ equations.

• flat metric <,> implies the existence of flat coordinates t^1, \ldots, t^n and one may choose $e = \partial_1$. Then

$$c_{1lphaeta}=\langle\partial_lpha,\partial_eta
angle\equiv\eta_{lphaeta}$$
 and hence $c^lpha_{eta\gamma}(t)=\eta^{lpha\epsilon}c_{\epsiloneta\gamma}(t)$

with $\eta^{lpha\epsilon} = (\eta_{lpha\epsilon})^{-1}$, are the structure constants of \mathcal{A}_t .

- symmetry of c and ∇c implies the local existence of a function F = F(t¹,...,tⁿ) s.t c_{αβγ} = ∂_α∂_β∂_γF.
- assoc. of A_t then implies *WDVV* equations:

$$c_{lphaeta\gamma}\eta^{\gamma\epsilon}c_{\epsilon\mu
u}=c_{lpha\mu\gamma}\eta^{\gamma\epsilon}c_{\epsiloneta
u}.$$

• F is called **prepotential** or free energy.

Orbit spaces

The orbit space Saito metric

• Let $V = \mathbb{C}^n$, g the W-invariant standard constant metric given by

$$g(e_i, e_j) = \delta_{ij},$$

where $e_i, i = 1, ..., n$ is the standard basis in V and let $\{x^i\}_{i=1}^n$ be the corresponding orthogonal coordinates.

Orbit spaces

The orbit space Saito metric

• Let $V = \mathbb{C}^n$, g the W-invariant standard constant metric given by

$$g(e_i, e_j) = \delta_{ij},$$

where $e_i, i = 1, ..., n$ is the standard basis in V and let $\{x^i\}_{i=1}^n$ be the corresponding orthogonal coordinates.

• Let rank W = n. W acts in V by orthogonal transformations s.t V is the complexified reflection representation of W.

Orbit spaces

The orbit space Saito metric

• Let $V = \mathbb{C}^n$, g the W-invariant standard constant metric given by

$$g(e_i, e_j) = \delta_{ij},$$

where $e_i, i = 1, ..., n$ is the standard basis in V and let $\{x^i\}_{i=1}^n$ be the corresponding orthogonal coordinates.

- Let rank W = n. W acts in V by orthogonal transformations s.t V is the complexified reflection representation of W.
- Let y¹(x),..., yⁿ(x) be a hom. basis in the ring of invariant polynomials
 S(V*)^W = C[x¹,...,xⁿ]^W = C[x]^W = C[y¹,...,yⁿ].

Orbit spaces

The orbit space Saito metric

• Let $V = \mathbb{C}^n$, g the W-invariant standard constant metric given by

$$g(e_i, e_j) = \delta_{ij},$$

where $e_i, i = 1, ..., n$ is the standard basis in V and let $\{x^i\}_{i=1}^n$ be the corresponding orthogonal coordinates.

- Let rank W = n. W acts in V by orthogonal transformations s.t V is the complexified reflection representation of W.
- Let y¹(x),..., yⁿ(x) be a hom. basis in the ring of invariant polynomials
 S(V*)^W = ℂ[x¹,...,xⁿ]^W = ℂ[x]^W = ℂ[y¹,...,yⁿ].

• Let $d_i = \deg y^i$, i = 1, ..., n and fix the ordering

$$h=d_1>\cdots\geq d_n=2.$$

We call h the **Coxeter number** of W.

The orbit space Saito metric

• y^1, \ldots, y^n are coordinates on $M_W = V/W \cong \mathbb{C}^n$,

- y^1, \ldots, y^n are coordinates on $M_W = V/W \cong \mathbb{C}^n$,
- x¹,...,xⁿ are local coordinates on M_W \ Σ, where Σ ⊂ M_W consists of irregular orbits, i.e orbits consisting of less than |W| points.

- y^1, \ldots, y^n are coordinates on $M_W = V/W \cong \mathbb{C}^n$,
- x¹,...,xⁿ are local coordinates on M_W \ Σ, where Σ ⊂ M_W consists of irregular orbits, i.e orbits consisting of less than |W| points.
- Let g^{αβ} be the corresponding contravariant metric. g is defined on M_W \ Σ, det(g^{αβ}(y)) = 0 on Σ.

The orbit space Saito metric

Definition (K.Saito et. al '80, B. Dubrovin '94)

The metric $\eta^{\alpha\beta} = \mathcal{L}_e g^{\alpha\beta}$ is called the *Saito* metric, it is defined up to proportionality and it is flat, where $e = \partial_{y^1}$.

There exists a distinguished basis $t^i \in \mathbb{C}[x]^W$, $(1 \le i \le n)$ s.t η is constant and antidiagonal,

$$\eta^{\alpha\beta} = \delta^{n+1,\alpha+\beta}.$$

Such coordinates are called *Saito* polynomials. They constitute examples of polynomial twisted periods (M. Feigin, A. Silantyev '12)

Example: $W = A_n$, Saito polynomials take the form

$$t_s = \operatorname{Res}_{z=\infty} \prod_{j=1}^{n+1} (z - x_j)^{\nu}|_{\sum x_j=0},$$

with $\nu = \frac{s}{h}, \quad s = 1, \dots, n.$

The orbit space Saito metric

• F(t) is defined (up to quadratic terms) by

$$g^{lphaeta}(t)=rac{(d_lpha+d_eta-2)}{h}\eta^{lpha\lambda}\eta^{eta\mu}\partial_\lambda\partial_\mu F(t).$$

• the structure constants $c^{\gamma}_{\alpha\beta}(t) = \eta^{\gamma\epsilon}\partial_{\alpha}\partial_{\beta}\partial_{\epsilon}F(t)$ are uniquely defined.

Theorem (Dubrovin'94)

There exists a polynomial Frobenius structure on M_W with the metric $\eta = <,>$ and

- the Euler vector field $E = \sum_{i=1}^{n} \frac{1}{h} d_i y^i \partial_{y^i}$,
- the identity vector field $e := \partial_{y^1}$.

The orbit space Saito metric

Proposition

The determinant of the covariant Saito metric η in the x coordinates is given as

$$\det \eta(x) = c \prod_{lpha \in R_+} g(lpha, x)^2, \quad c \in \mathbb{C}^{ imes}.$$

A question An answer An example

Coxeter discriminant

Definition (Strachan '04)

Let M be a Frobenius manifold. A natural submanifold N of M is a submanifold $N \subset M$ s.t

- $TN \circ TN \subset TN$,
- $E_x \in TN \quad \forall x \in TN.$

A question An answer An example

Coxeter discriminant

Definition (Strachan '04)

Let M be a Frobenius manifold. A natural submanifold N of M is a submanifold $N \subset M$ s.t

• $TN \circ TN \subset TN$,

•
$$E_x \in TN \quad \forall x \in TN.$$

Definition

 Σ is called a Coxeter discriminant. It is the image of the union of the mirrors under the natural projection map

$$\pi: V \to M_W.$$

A stratum $\pi(D) \subset \Sigma$ is the image of the intersection subspace $D = \bigcap_{\beta \in B} \prod_{\beta}$, where $B \subset R$, $\prod_{\beta} = \{x \in V | g(x, \beta) = 0\}$.

A question An answer An example

Example: There are 5 strata in A_4 , of type A_3 , $A_2 \times A_1$, A_2 , A_1^2 , A_1 , A_1 .

• **Discriminant strata** are shown to be natural submanifolds of the Frobenius manifold *M_W* (Strachan '04; Feigin, Veselov '07, AFS'17)

A question An answer An example

Example: There are 5 strata in A_4 , of type A_3 , $A_2 \times A_1$, A_2 , A_1^2 , A_1 , A_1 .

- **Discriminant strata** are shown to be natural submanifolds of the Frobenius manifold M_W (Strachan '04; Feigin, Veselov '07, AFS'17)
- $\pi: D \to \pi(D)$ is a diffeomorphism near generic point $x_0 \in D$.

A question An answer An example

Example: There are 5 strata in A_4 , of type A_3 , $A_2 \times A_1$, A_2 , A_1^2 , A_1 , A_1 .

- **Discriminant strata** are shown to be natural submanifolds of the Frobenius manifold M_W (Strachan '04; Feigin, Veselov '07, AFS'17)
- $\pi: D \to \pi(D)$ is a diffeomorphism near generic point $x_0 \in D$.
- The Saito metric on M_W induces a metric on $\pi(D)$ which is naturally given as the restriction of η to the stratum. Let us denote it by η_D .

A question An answer An example

Example: There are 5 strata in A_4 , of type A_3 , $A_2 \times A_1$, A_2 , A_1^2 , A_1 , A_1 .

- **Discriminant strata** are shown to be natural submanifolds of the Frobenius manifold M_W (Strachan '04; Feigin, Veselov '07, AFS'17)
- $\pi: D \to \pi(D)$ is a diffeomorphism near generic point $x_0 \in D$.
- The Saito metric on M_W induces a metric on $\pi(D)$ which is naturally given as the restriction of η to the stratum. Let us denote it by η_D .
- The linear coordinates xⁱ give rise to coordinates on the stratum D and on π(D). These are flat coordinates for the restricted metric g on the stratum D. We denote this metric by g_D.

A question An answer An example

We are interested in answering the following:

Question

How does det η_D look in the flat coordinates of g_D on discriminant strata?

We are interested in answering the following:

Question

How does det η_D look in the flat coordinates of g_D on discriminant strata?

Let us fix some notation:

 Let L = {γ₁,..., γ_k} ⊂ R, 1 ≤ k ≤ n and consider D = ∩_{γ∈L}Π_γ s.t dim D = n − k.

• For any
$$\beta \in R \setminus \langle L \rangle$$
, $\widehat{L} = L \cup \{\beta\}$, define $U_{\beta} = \langle \widehat{L} \rangle \cap R$.

The set U_{β} is a root system and admits the decomposition

$$U_{\beta} = \bigsqcup_{i=1}^{p} R_{i}, \qquad (1)$$

where $\{R_i\}_{i=1}^p$ are irreducible root systems.

A question An answer An example

Theorem

The determinant of η_D on D is proportional to the product of linear factors

 $\prod_{l\in A}g_D(l,x)^{m_l}, \quad m_l\in\mathbb{N},$

where A is a collection of non-proportional vectors on D. Furthermore, each $I \in A$ has the form β_D for some $\beta \in R \setminus \langle L \rangle$, where β_D is the orthogonal projection of β on D.

A question An answer An example

Theorem

The determinant of η_D on D is proportional to the product of linear factors

 $\prod_{l\in A}g_D(l,x)^{m_l}, \quad m_l\in\mathbb{N},$

where A is a collection of non-proportional vectors on D. Furthermore, each $I \in A$ has the form β_D for some $\beta \in R \setminus \langle L \rangle$, where β_D is the orthogonal projection of β on D. The multiplicity m_I equals the Coxeter number of the root system R_q from the decomposition (1), such that $\beta \in R_q$.

A question An answer An example

Coxeter group, $W = A_4$

Example

Consider a stratum of type A_2 in A_4 , let $D = \{x_1 = x_2 = x_3\}$. Coordinates on D are chosen as: $\xi_0 = x_1 = x_2 = x_3$, $\xi_1 = x_4$, $\xi_2 = x_5$. Then,

$$\det \eta_D = c(\xi_0 - \xi_1)^4 (\xi_0 - \xi_2)^4 (\xi_1 - \xi_2)^2.$$

A question An answer An example

Coxeter group, $W = A_4$

Example

Consider a stratum of type A_2 in A_4 , let $D = \{x_1 = x_2 = x_3\}$. Coordinates on D are chosen as: $\xi_0 = x_1 = x_2 = x_3$, $\xi_1 = x_4$, $\xi_2 = x_5$. Then,

$$\det \eta_D = c(\xi_0 - \xi_1)^4 (\xi_0 - \xi_2)^4 (\xi_1 - \xi_2)^2.$$

Q: How does this match the statement of the Theorem?

 $\ \, {\mathfrak S} = e_3 - e_5, \ \, U_\beta = \langle e_1 - e_2, e_2 - e_3, \beta \rangle \cap R \cong A_3, \ \, h(A_3) = 4,$

• No other factors in det η_D , e.g $(e_2 - e_4)_D = (e_3 - e_4)_D$ etc.

A question An answer An example

Strata in type A_N

An arbitrary *I*-dimensional stratum $D \subset V$ has the form $(k \leq I)$:

$$\begin{aligned} x_1 &= \dots = x_{m_0} = \xi_0, \\ x_{m_0+1} &= \dots = x_{m_0+m_1} = \xi_1 \\ &\vdots \\ x_{\sum_{i=0}^{k-1} m_i + 1} &= \dots = x_{\sum_{i=0}^k m_i} = \xi_k. \end{aligned}$$

A question An answer An example

Strata in type A_N

An arbitrary *I*-dimensional stratum $D \subset V$ has the form $(k \leq I)$:

$$x_{1} = \dots = x_{m_{0}} = \xi_{0},$$

$$x_{m_{0}+1} = \dots = x_{m_{0}+m_{1}} = \xi_{1}$$

$$\vdots$$

$$x_{\sum_{i=0}^{k-1} m_{i}+1} = \dots = x_{\sum_{i=0}^{k} m_{i}} = \xi_{k}.$$

Coordinates on *D*: ξ_0, \ldots, ξ_l , where $\xi_i = x_i$, $i = k + 1, \ldots, l$. Then,

$$\det \eta_D = c \prod_{0 \leqslant i < j \leqslant l} (\xi_i - \xi_j)^{m_i + m_j}$$

where $c = (-1)^{\sum_{i=1}^{l} im_i} (N+1)^{-N} \prod_{a=1}^{l} m_a^2 \prod_{a=0}^{l} m_a^{m_a-1}$.

A question An answer An example

Proof of the Theorem ?

For **classical** series we use Landau-Ginzburg superpotential description of the Frobenius structures on the discriminant strata. In type A this superpotential on the stratum D is

$$\lambda(p) = \prod_{i=0}^{n} (p - \xi_i)^{m_i}, \quad m_i \in \mathbb{N}.$$

A question An answer An example

Proof of the Theorem ?

For **classical** series we use Landau-Ginzburg superpotential description of the Frobenius structures on the discriminant strata. In type A this superpotential on the stratum D is

$$\lambda(p) = \prod_{i=0}^{n} (p-\xi_i)^{m_i}, \quad m_i \in \mathbb{N}.$$

The Saito metric and multiplication are:

$$\eta(\partial_i, \partial_j) = \sum_{p_s:\lambda'(p_s)=0} \operatorname{res}|_{p=p_s} \frac{\partial_i(\lambda)\partial_j(\lambda)}{\lambda'(p)} dp$$
$$\eta(\partial_i \circ \partial_j, \partial_k) = \sum_{p_s:\lambda'(p_s)=0} \operatorname{res}|_{p=p_s} \frac{\partial_i(\lambda)\partial_j(\lambda)\partial_k(\lambda)}{\lambda'(p)} dp,$$

A question An answer An example

Proof of the Theorem ?

For **classical** series we use Landau-Ginzburg superpotential description of the Frobenius structures on the discriminant strata. In type A this superpotential on the stratum D is

$$\lambda(p) = \prod_{i=0}^{n} (p-\xi_i)^{m_i}, \quad m_i \in \mathbb{N}.$$

The Saito metric and multiplication are:

$$\eta(\partial_i, \partial_j) = \sum_{p_s:\lambda'(p_s)=0} \operatorname{res}|_{p=p_s} \frac{\partial_i(\lambda)\partial_j(\lambda)}{\lambda'(p)} dp$$
$$\eta(\partial_i \circ \partial_j, \partial_k) = \sum_{p_s:\lambda'(p_s)=0} \operatorname{res}|_{p=p_s} \frac{\partial_i(\lambda)\partial_j(\lambda)\partial_k(\lambda)}{\lambda'(p)} dp,$$

For **exceptional** series, proof relies heavily on the geometry of root systems.

A question An answer An example

Thank you for your attention!