Special lagrangian geometry for Fano varieties

Nikolay A. Tyurin Bogolyubov Laboratory of Theor. Phys, JINR (Dubna) *and* Depart. of Math., HSE (Moscow)

SIS'14 (12 Sept 2014)

Special lagrangian geometry for Calabi - Yau manifold — extremly popular in view of **Mirror Symmetry conjecture**. Informally, **MS** in the broadest context is a duality

(Yu. Manin) What is this **duality**:

f.e. Homological Mirror Symmetry (M. Kontsevich): M and W are mirror partners if

$$\mathcal{DB}^{coh}(M) \cong \mathcal{FF}(W) \mathcal{DB}^{coh}(W) \cong \mathcal{FF}(M)$$

where the categories \mathcal{DB}^{coh} and \mathcal{FF} are defined in terms of Complex geometry and Symplectic geometry respectively.

(M, I, ω) — Kahler manifold = complex structure + symplectic structure

Thus *M* carries derived objects, defined in terms of (complex structure) \implies **vector bundles, coherent sheaves** (symplectic structure) \implies **lagrangian submanifolds** One needs an appropriate organizations on the unbounded sets

{coherent sheaves} $\mapsto \mathcal{DB}^{coh}$,

derived category of bounded coherent sheaves

 $\{ \text{lagrangian submanifolds} \} \mapsto \mathcal{FF},$

Fukaya - Floer category. But this way of thinking is not unique: recall the original story. Mirror symmetry for 3 - dimensional Calabi - Yau: (M, I) is complex 3 - dimensional manifold s.t. there exists nonvanishing everywhere top holomorphic form θ . In local complex coordinates (z_1, z_2, z_3):

$$\Theta = dz_1 \wedge dz_2 \wedge dz_3,$$

and globally Θ is unique up to \mathbb{C}^* .

Example: quintic hypersurface $Q_5 \in \mathbb{CP}^4$.

According to **Yau**'s famous result this M admits solutions to the Einstein equation:

the family of Kahler - Einstein metrics \mapsto distinguished Kahler structure.

Thus (M, I, ω) can be regarded as a *symplectic manifold*, but the space of lagrangian submanifolds is too huge —

Problem: *impose any natural conditions to derive finite dimensional moduli space*

J. McLeane, N. Hitchin: special lagrangian geometry for CY₃. Recall, $S \subset M$ is **lagrangian** iff $\omega|_S \equiv 0$ and

 $dim_{\mathbb{R}}S = dim_{\mathbb{C}}M = 3.$

Thus $\Theta|_S$ is a top complex form on S, and one can compare it with Vol_g , where g is the restriction of the Kahler - Einstein metric on S.

Special condition: $\Theta|_S = re^{ic} \operatorname{Vol}_g$ where $r \in \mathbb{R}$ and c is constant. **Local deformation theory for SpLag:** McLean's doctor thesis, the main results

- deformation is finite dimensional, $b_1(S)$;
- deformation is unobstructed.

Thus one gets the moduli space of special lagrangian submanifolds

- a finite dimensional manifold.

Example: Mirror symmetry for elliptic curves

 $VBAC \longleftrightarrow SpLag$

Special lagrangian geometry for CY_3 — very popular subject 15 years ago.

The main abbreviation: **SYZ** — A. Strominger, S.-T. Yau, E. Zaslow.

Main problem: any CY_3 admits special lagrangian fibrations.

fibration	Μ	\supset	$\pi^{-1}(b)$
	\downarrow		1
the base	В		SpLag

is not solved yet, present status — conjecture.

D. Auroux: Special lagrangian geometry for Fano varieties. Formal definition: X is Fano, if the anticanonical class is ample. !For Fano's: the Kahler - Einstein equation admits solutions! Unformal definition: (X, I, ω) — Kahler manifold,

 $\exists \Theta_D$ holomorphic top form:

with pole on complex subsurface $D \subset X$;

and without zeros on $X \setminus D$;

s.t. the Kahler form turns to be exact $\omega = d\alpha$ on $X \setminus D$.

(of course, such a form is not unique).

The space of such $D \subset X$ is isomorphic to projective space \mathbb{CP}^k where k is sufficiently big. Thus the specialty condition depends on the choice of D.

Auroux's special condition: The complement $X \setminus D$ is fibered on special lagrangian submanifolds with respect to Θ_D .

- in other words, $X \setminus D$ is open CY_3 with top form Θ_D .

Auroux's example: For \mathbb{CP}^2 and $D = Q \cup I$ where Q is a conic and I is a line, such special lagrangian fibration exists. **Auroux's conjecture:** Special lagrangian fibration exists for $D = \Sigma_3$ — smooth cubic curve.

- is not proved yet.

The Auroux's example was reconstructed using **pseudotoric geometry** (**N.T.**), but it doesn't help for the study of Auroux's conjecture.

(**N.T.:** Special lagrangian fibration for flag variety F^3 .)

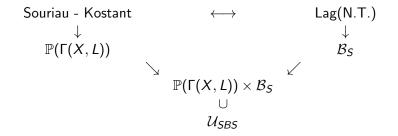
Alternative approach: **Special Bohr** - **Sommerfeld geometry.** (X, I, ω) — Fano variety, ω — canonical Kahler form, $[\omega] \in H^2(X, \mathbb{Z})$, so $L \to X$ line bundle with $c_1(L) = [\omega]$. \implies the Bohr - Sommerfeld condition can be imposed on lagrangian submanifolds:

prequantization data	(<i>L</i> , a)	\mapsto	(L_S, a_S)
$F_{a}=2\pi i\omega$	\downarrow		\downarrow
flat <i>as</i>	Х	\supset	S

and $S \subset X$ is **Bohr** - **Sommerfeld** iff a_S admits covariantly constant section $\sigma_S \in \Gamma(S, L_S)$. **General definition:** $S \subset X$ is s - Special Bohr - Sommerfeld w.r.t $s \in \Gamma(X, L)$ iff

 $|s|_{S} = f \cdot e^{ic} \sigma_{S}$, where $f \in C^{\infty}(S, \mathbb{R}_{+})$, $c \in \mathbb{R}$.

In general it gives a relation between two approaches in **Geometric Quantization:**



where U_{SBS} is the *incidence cycle* consisting of pairs (s, S) where S is s - SBS.

In particular for Fano varieties:

- finite dimensional subspace $\mathbb{P}(H^0(X_I, L)) \subset \mathbb{P}(\Gamma(X, L));$

- for any holomorphic $s \in H^0(X_I, L))$ one has **descrete** set of s - SBS cycles,

Finite object: $\mathcal{M}_{SBS}(X)$ — the moduli space of Special Bohr -Sommerfeld cycles of fixed topological type for our given Fano variety X.

Toy example: $X = \mathbb{CP}^1$ — projective line, the simplest Fano variety

$$\mathcal{M}_{SBS}(X) = \mathbb{CP}^2 \backslash Q$$

(日) (同) (三) (三) (三) (○) (○)

where Q is a quadric \implies quite nice answer.

work in progress ...