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Conformal symmetry in Minkowski D-dimensional
spacetime (D — 1,1):

ds? = 0 is preserved.

For D # 2 the conformal algebra is so(D, 2).
Special cases:

0 + 1 conformal algebra: so(1,2) ~ s/(2).

1 + 1 conformal algebra: witt & witt (holo+antiholo)

it a.k.a. centerless Virasoro algebra.
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witt algebra:

[Ln,Lm] = (n—m)Lpym, NMEZL
sl(2) algebra:
[D, H] H,
[D,K] = -K,
[H,K] = 2D.
sl(2) C wittforn,m=0,+£1:

S/(2) = {L:H , Lo}

o & - = DA
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0 + 1 Conformal Mechanics:
de Alfaro-Fubini-Furlan, Nuovo Cimento 1976.

Some selected applications:
Test particles near BH horizon (Britto-Pacumio et al. hep-th/9911066),

CFT,/AdS; correspondence(Jackiw, A. Sen ,...),
Computation of BH entropy via l.w.r’s and ladder operators,
Higher-spin theories in the world-line framework,

Cosmology: supersymmetric mini-superspace.
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parabolic versus hyperbolic/trigonometric D-module reps and
homogeneous versus inhomogeneous D-module reps.

par : Lp=—t"19; — M\t
hyp Lh= —%e””t (Ot + An) .

1 dimensional parameter.
witt closure for A\, = nA\ + ~.

hOIT) . 5n(§0) = LnQD = anQO + bnSO,
inhom : dn(p) = Lnyp = anp + bp.

Let x, = andt, Yn = bp. In matrix form
ngom = (Xn+Yn),
Linhom  _ Xn Yn
n 0o 0 /-
witt closure for A\, = n\ + ~.
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Combining par, hyp and hom, inhom we have four distinct actions of
the toitt generators on the bosonic field ¢(t).

Special choices for ~

In both cases b, = a.
One of the L, operators, proportional to 9;, is the “Hamiltonian”: L_4 for
par and Lq for hyp.

Dimensional analysis:

hom, par: no dimensional parameter,

inhom, par: one dimensional parameter, A,

hom, hyp: one dimensional parameter, p,

inhom, hyp: two dimensional parameters, ; and .
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D = 1 conformal actions:
Let £L=g-¢?+h.
Up to total derivatives, for hom:

3L = [gAt+29B+ g,Byle? + [2gBrp + hoA + Nypr +
[h,Be + Ni].

For par, B = M\A;. System to be solved

All(1+2X) g+ Ag.¢] = O,
2AQAwp + h¢A + Nsp = 0,
AhopAr+ Ny = 0.

Similar system for hyp. On the other hand, the relation Ay = n?;2A,
only exists for hyp case.
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The Inhom case variation is
0L = [gA: + Bg,l¢? + [2gBt + hy,A + Nyt + [h,B + Ni.
The system to be solved is

At[g + Ag@] = 07
2A\0A: + h¢A + N¢ = 0,
)\h(pAt +N; = 0.
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The D = 1 sl(2)-invariant actions (n = 0, £1):

Homogeneous — parabolic case: power-law Lagrangian

(142X) 2

L = Cip~ » ¢+ Caph.

for A # 0. No dimensional parameter.

Homogeneous — hyperbolic case:

(14+2X) .2 2/\2

L = Cilp~ * @+ i 3] + Copr.
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Inhomogeneous — parabolic case:
1y 2 Ha
L = Cie »7p=+ Coer”.
Inhomogeneous — hyperbolic case:

1 1
L = Cie »¥[p? + Pp?] + Coer®.

In order to have a dimensionless action S ([S] = 0), the scaling
dimension of the Lagrangian is [£] = 1, if we assign the time
coordinate to have scaling dimension —1. Taking into account [u] = 1
we end up with:

- in both homogeneous cases (/ and /ll), [C1] = [C»] = 0, provided that
[p] = A;

- in both inhomogeneous cases (//and IV), [Ci] = —1 — 25, [Cy] =1,
[¢] = [p] = s, with s arbitrary.
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The D = 2 witt @ witt-invariant actions:

The homogeneous case
(no dimensional parameter, power-law Lagrangian):

C
L = Zorp+ Coip3.
¥
(S=[[dzidz L, [C12] =0, [¢] = 2), [\] = 0).
The inhomogeneous case
(the Liouville equation):
L = prp— + Cge%w.
(] = Al = A, [Ci] = =2, [C] = 2).
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In the parabolic case, the Hamiltonian is identified with the (positive or
negative) s/(2) root generator while, in the hyperbolic case, the
Hamiltonian is identified with the s/(2) Cartan generator. This
difference proves to be crucial in the construction of conformally
invariant actions.

From an algebraic point of view the hyperbolic D-module rep can be
recovered from the parabolic D-module rep via a singular
transformation. Let us call, for simplicity, L, = L™ when we fix the
values . = 1 and 7 = 0. Therefore L, = —€"" (9, + n)). For t > 0 the
change of variable

t— 7(t) = In(t)

allows to recover the parabolic rep L, = —t"19; — n\t" at the specific
values, for its constants, A = A and 4 = 0.
Therefore

A= 2
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Superconformal extensions (main results):
Existence of a critical scaling dimension for A" = 4,7, 8 finite SCA'’s.
Constraints on superconformal mechanics in the Lagrangian setting.

New type of (target-target) dualities.
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Properties of finite SCA’s:

Even sector Geven : SI(2) © R (R is the R-symmetry).
Odd sector Gogq : 2N generators.

The dilatation operator D induces the grading
G = G4 EBQ_% @go@g% & G-

The sector Gy (G_1) containes a unique generator given by H (K).
The Gy sector is given by the union of D and the R-symmetry
subalgebra (Go = {D} U{R}).

The odd sectors g% and g_% are spanned by the supercharges Q;’s

and their superconformal partners (~),-’s, respectively.
The invariance under the global supercharges Q;’s and the generator
K implies the invariance under the full superconformal algebra G.
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Most relevant cases: N/ = 4,7, 8 finite SCA’s

N = 4: simple SCA’s are A(1, 1) and the exceptional superalgebras
D(2,1; ), for a € C\{0, —1}.

Superalgebra isomorphism for o’s connected via an S; group
transformation:

a(1) = «, a(s) — —(1 + a)’ a(s) = _1"1‘701’
2) _ 1 4) _ 1 6) _ e
R R T

A(1,1) can be regarded as a degenerate superalgebra recovered from
D(2,1; «) at the special values oo = 0, —1.

For a real (a € R) a fundamental domain under the action of the S
group can be chosen to be the closed interval

a € [0,1].
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Over C, there are four finite ' = 8 SCA’s and one
finite ' =7 SCA.

The finite N = 8 superconformal algebras are:

/) the A(3,1) = sl(4|2) superalgebra, possessing 19 even generators
and bosonic sector given by s/(2) ¢ sl(4) ¢ u(1),

i) the D(4,1) = osp(8,2) superalgebra, possessing 31 even
generators and bosonic sector given by s/(2) ¢ so(8),

iii the D(2,2) = osp(4|4) superalgebra, possessing 16 even
generators and bosonic sector given by s/(2) ¢ so(3) & sp(4),

iv) the F(4) exceptional superalgebra, possessing 24 even generators
and bosonic sector given by s/(2) ¢ so(7).

The finite N' = 7 superconformal algebra is the exceptional

superalgebra G(3), possessing 17 even generators and bosonic sector
given by s/(2) @ go.
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Existence of critical scaling dimension \’s:

Results: D-module reps are induced, with the identifications:

N =4: D(2,1; «) reps are recovered from the (k,4,4 — k)
supermultiplets, with a relation between « and the scaling dimension
given by oo = (2 — k).

N = 8: for k # 4, all four N = 8 finite superconformal algebras are
recovered, at the critical values )\, = ﬁ, with the identifications:
D(4,1) for k =0,8, F(4)fork =1,7,

A(3,1) for k =2,6 and D(2,2) for k = 3,5.

N = 7: the global supermultiplet (1,7,7,1) induces, at A = —}P a
D-module representation of the exceptional superalgebra G(3).
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inhomogeneous transformations exist at A # 0:
In the parabolic case the general Witt algebra transformations applied
on the field ¢ are

L (p) = —t™o = A(m+)t"p — p(m+ B)t".

LP& is proportional to the Hamiltonian if we set v = 1 and 8 = 1.
For \ # 0 we can write

L(p) = —t™Te—Mm+ 1)t + %),
so that the action of the homogeneous transformation with scaling
dimension A # 0 is recovered for the shifted field p = ¢ + £. Therefore
the (A, p) transformations with A # 0 are equivalent to the pure
homogeneous transformations with scaling parameter A and p = 0.
The same is true in the hyperbolic case.

Francesco Toppan (CBPF) SIs 19/32



The list of inhomogeneous D-module reps for the finite d = 1
superconformal algebras is given by

osp(112)  —(1,1)o,,

Sl(2|1) - (1 ) 2a 1)0,p7 (27 2)0,pa

B(1,1) —(1,3,3,1)o,.

A1) —(1,4,3)0, (2:4,2)0,, (3,4,1)0,, (4,4,0)0,
none

S
> awm
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Concerning the centerless superVirasoro algebras, the homogeneous
supermultiplets are encountered for

N =1 8Vir: (k,1,1—k),, k=0,1 with X arbitrary,

N =2 SVir: (k,2,2—k),, k=0,1,2 with X\ arbitrary,

N =3 8Vir: (1,3,3,1),, with X arbitrary,

N =4 SVir: (k,4,4—k),, k=0,1,234 =00r\= ﬁ(k vy

The inhomogeneous D-module reps of the centerless superVirasoro
algebras are only encountered for AV = 1, 2, 3 but not for ' = 4:

N =1 8Vir: (1,1)g,,

N =2 SVir: (2,2,0), and (1,2,1)o,,
N =38 8Vir: (1,3,3,1)g,,

N =4 SVir: none.
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The D-module reps with N'= 1,24 act on the (M + 1|A\)
supermultiplets m,

mT = (o1, 0k, G1s - In—k, 1|11, - .., ¥nr), With component fields
va, 9i, Vo and constant entry 1 in the (A + 1)-th position.

The N' = 3 D-module rep acts on a (5|4) supermultiplet with 1 in the
5-th position. The homogeneous D-module reps are recovered by
deleting the row and the column associated with the constant entry 1
in the supermultiplet.

For A/ = 1, in matrix form and in the hyperbolic presentation:

0 0 1
Q = ¢t 0 o o0 |,
—0r—2rx —2rp O

—dr—n\ —np 0
L, = & 0 0 0 .

0 0 —0r—n(1+2))

The inhomogeneous D-module rep of osp(1|2) is recovered for
n=0,+1, r = £} and by setting A = 0.
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For N = 2:
the (2,2, 0) rep is constructed from

QY = €"[Ejq+ Eos — 2(Eaz + Esz)rp — (Ear + Es2)(0r + 2r)\)),
Q! = €"[Eis — Eoa+2(Eas — Es3)rp + (Eaz — Es1)(0r + 2r\)];

the (1,2,1) rep is constructed from

QY = €"[Eys+ Eso — 2Eusrp — Eosr — (Ezs + E41)(0: + 2r\)],
Q: = e”[E15 — Eqp — 2Es3rp + Epgr + (Ez4 — Es1) (0t + 2r)\)];

the (0,2, 2) rep is constructed from

Q? = e’t[E41 + Ego — (E14 + E25)(6, +r—+ 2[’)\)],
Q' = €"[Esi — Eqa+ (Eoa — Es) (Ot +r +2r)\)].
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For homogeneous transformations the Lagrangians of the
D(2,1; a)-invariant actions are:
in the homogeneous parabolic case:

_ . 1 1 )
L = A+ Y+ gF) + As(Yoigi + 56”k¢i¢jgk) + EAWGUK%QWM

1+2a

with A= Cyp "«

in the homogeneous hyperbolic case:

L = AP+ wphy + 1Pg?) + 12 Ay (Yotigi + —e"fkw,-w,-gk)+

1 )
guzA o€ P + pPaPAp?,

1+2a

with A= Cp 2",
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For inhomogeneous transformations, the requirement that p = 0 with
A = 0 implies that the superconformal actions are only invariant under
the A(1, 1) superalgebra.

In the inhomogeneous parabolic case:

L = A+ v+ gF) + As(Yoigi + %Gijklbilﬁjgk) + %Agogoﬁijk%ﬁol/)il/)j
with A= Ce »
in the inhomogeneous hyperbolic case:
L = A+ mbph+ 1P9F) + 1P Ap(vothigi + %eﬁklﬁﬂﬁjgk) +
%M2A¢¢€Uk¢o¢i¢j¢k + p2PPA,

with A= Ce 7.
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Fields redefinitions:

homogeneous
Q_b = _2a¢ 20,
— _142a
Y = ¢ 2y,
_ _ 142
g, = ¢ 2a g;.
inhomogeneous
— _e
¢ = _2Pe 2p7
— _e
¢l = € 2p¢/a
g9 = e g

= & - = DA
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The actions in their respective “constant kinetic basis”, are

Homogeneous parabolic case:

- - = _ 2(1+2 — 1 - - _
L = C(*+ v+ agP) + 2(1 1 20)C (1/101#;9/' + §€Uk¢i¢jgk> +

¢
2(1 +2a)(1 +3a)C 4 - - - -
1+ ag,)éer @) I poidii,

Inhomogeneous parabolic case:

B Yoy P B
L = C(&*+ v+ gP) + 70 (1/101/}/'91' + §€Uk¢i'¢jgk) +
2C

3(52 €ijklzoizi@zj@zka
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Homogeneous hyperbolic case:

- _— _ 2(1+2 2C /- - _ 1 - - _
L = C(¢?+ s + 12gP) + % (11107,/1/91' + §€”k¢i¢jgk) +

2(1 + 20)(1 2C - - - - 2C -
(1+ a)?(’ql_;sa)u T JJLT 7.

Inhomogeneous hyperbolic case:
- o _ 21PC - — - 1 - -
L = C(¢2+M¢/¢/+M29i2)+L Doii + e Pibigi ) +
o 2

3 ¢2 © e Gl + —¢2
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1D superconformal invariance does not imply
supersymmetry:

Two types of grading (leading to parabolic or hyperbolic/trigonometric
D-module reps).

The ordinary supersymmetry requires, for a given \/, that a set of A/
fermionic symmetry generators Q; closes the supersymmetry algebra
{Q,Q} =25;H,[H,Q]=0(,j=1,...,N), where His the
time-derivative operator (the “Hamiltonian”).

In the hyperbolic/trigopnometric cases, A fermionic symmetry
generators can be found. They are the square roots of a symmetry
generator (let’s call it Z), which does not coincide with the Hamiltonian
H. In the hyperbolic/trigonometric cases, two independent symmetry
subalgebras {Q}, QF} = 25;Z*, [Z*, Q] = 0 (with Z*+ # H and

Z~ # H) are encountered. In the parabolic cases two independent
symmetry subalgebras are also encountered and one of them can be
identified with the ordinary supersymmetry (Z— = H, Z* # H).
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osp(1]2)-invariant example.

The hyperbolic action is

[t - v 2.
The five invariant operators (closing the osp(1|2) algebra) are given by

Qo=ey, Qy=el(pFy),
Zi(p iZt(SO F (P) Zi’l/J — e:|:2l‘1/'}’
Ho=¢,  Hy =1
One shoulde note that Z*+ = (Q*)>2.

No change of time variable t — 7(t) allows to represent either Z+ or
Z~ as a time-derivative operator with respect to the new time .
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Further developments:

Test particles near BH horizon,

CFT;/AdS; correspondence,

Computation of BH entropy via l.w.r.s and ladder operators,
Higher-spin theories in the world-line framework,
Cosmology: supersymmetric mini-superspace.

Conformal topological theories (via twisted supersymmetry).
Extension to affine superalgebras.

Extension to Galileian superconformal theories.
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Thanks for the attention!
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