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One scalar flat cosmologies

Friedman
eguations

when B(t) =0




B R 1
1s2 = — 2Bt g2 4 a?(t) dx - dx ,
at) = e H(t) = = A(t) ,

a(t
| a(t)

dt, = e®Dat WH = A = H(d—1)

1. 1
L = eA—B{—§A2 + 5959 — egBV(sO)] ,

5+ (A — B)o + e?PV(p) =0,
A = AB — 2,
A2 gt = 20wy



where one should ezeclude possible branches satisfying the conditions

02 4+ 2V(p) = 0 i V() £ 0.
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Subsystem 11

where one should exclude possible branches satistying the conditions

H? — 2V(p) = 0 if V() # 0,
H? — 2V(p) < 0.




A well-developed theory of planar dynamical systems makes it possible to analyze qualitatively
local and global properties of their phase portraits. Generic planar systems are indeed very regular
and can have only a few different types of trajectories and limit sets. There are thus:

o fixed points (critical or stationary);
o periodic orbits (cycles);
¢ homoclinic orbits: connecting a given fixed point with itself:

¢ heteroclinic orbits: connecting pairs of different fixed points.

An implication of these results is that generic planar systems cannot be chaotic !, and are therefore
very special if compared with dynamical systems in more than two dimensions, where chaotic

regimes are frequently present.




System |: Admissible fixed points

It Subsystem I is linearized around a fixed point, the resulting equations read
i — o
0= —0y/2V(p) v — V'(pe) 6
where ¢ denotes the displacement of ¢ from its critical value,
¢ = ¢ — @

The corresponding eigenvalues

e = —0 - V(g

V(L:Oc) + \/V(HOC)
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Hyperbolic fixed point: Re ()\:I:) 7& 0

- saddle: if the two eigenvalues are real and have opposite signs;
- node (attracting or repelling): if the eigenvalues are real and have the same sign;
- improper node (attracting or repelling): if the two eigenvalues coincide;

- focus (attracting or repelling): if the two eigenvalues have the same real part;

e Elliptic fixed point: if the eigenvalues are purely imaginary:.

An important result is that the phase portraits of a nonlinear system and of its linearization are
qualitatively equivalent in a neighborhood of a hyperbolic fized point, where Re (A+) # 0. Let us
add that Subsystem I does not possess periodic trajectories on account of Dulac’s criterion, since
the expression

2+ V()
\/u 2V(p)

(4.14)

does not change sign on the whole two-dimensional plane. We are thus led to conclude that
Subsystem I can only have fized points, heteroclinic orbits or homoclinic orbits.




In order to understand qualitatively the phase portrait in a neighborhood of an admissible
fixed point one can analyze its structural stability. If the fixed point ¢, is a local minimum of
the potential V(). one should define the weak Lyapunov function with the required properties,

\/U + 2V(p) — V2V(ee) > 0, flpesve) = 0, (4.15)

f(cp., ‘u) = —ov?.

By construction this function is positive definite in the domain of phase space delimited by the
corresponding inequality (4.15) and vanish only at the fixed point, while its time derivative is
negative or positive semi- definite depending on the sign of @ = +1 and do not vanish identically
on any trajectory other than the fixed point itself. From the constructed Lyapunov function one
can conclude that this fixed point is unstable for ¢ = —1 and asymptotically stable for o0 = +1.
The inequality (4.15) defines explicitly the basin of attraction, i.e. the phase-space domain of
asymptotic stability, and all trajectories crossing it approach asymptotically the fixed point as
t— + 00.

The asymptotic behavior as t — + oo of the Hubble function and of the scale factor that apply
if the fixed point is asymptotically stable have the form

= V2V(pe), A = V2V(p)(t —to) it V(e) > 0. (4.16)

as pertains to an expanding de Sitter patch, while the exponential behavior leaves way to a power—
like behavior if V(¢.) = 0. Let us also recall that in four dimensions H = £ and a = eA/3,



(QUALITATIVE ANALYSIS OF SUBSYSTEM Il AND THE “SEPARATRIX’
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Integrable natural two-dimensional systems




Infinite families of Integrable Potentials
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Table 1: Families of integrable potential functions for the Lagrangians of eq. (2.11)
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SPORADIC INTEGRABLE POTENTIALS
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Group III (v = %)
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N INTEGRABLE TRIGONOMETRIC POTENTIAL

RELATIONS TO TODA SYSTEMS

Ay SL(3)/S0O(3) and SL(3)/SO(1
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The potential is the square of a D-term contribution:
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The 2 Kahler surface

1 d2J

2 dC2

> 2 50

= d¢® + (9,P(¢))” dB

C = Van Proeyen coordinate

= canonical coordinate = the inflaton scalar
2 J(C) = the Kahler potential

ds2 (dC? + dB?)

P(Cb) = the momentum map of the isometry
Killing vector k = 0Op

THE SCALAR POTENTIAL V(qb) — (P(Cb))z
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The curvature of the 1D Kahler manifold R = R.: ¢°" = — 9.9:logg.z9.-

can be expressed in terms of J(C) as
B J.I".F.I"E-ang - J”(C?)J””(C‘)

2.J"(C)2

R(C)
and in terms of P(gp) as

P.I’.P'.I’ \?:;

Flat case: P(p) linear or quadratic > V quadratic or quartic
Curved case: combination of exponentials:

P(p) = aexp(rvy) + bexp(—rvy) +pu
Starobinsky corresponds to a=0, v > 0 and by < 0. For Vo= \;’E one
obtains the theory dual to R + R? supergravity (in the “new minimal’
formulation):

v —> Kahler curvature , u = Fayet-lliopoulos term

The three different solutions correspond to the gauging of different 1D
subgroups of SL(2Z2,R): elliptic (U(1)); hyperbolic (SO(1,1)); parabolic

(translations)



Topological properties of the inflaton field:

A topology of the Kahler manifold is defined
by the topological properties of the inflaton
field (the Inflaton potential). It iIs encoded In
the definition range of the coordinates C
and B of the Kahler manifold.



Three types of isometries

Definition B.1 A Hadamard manifold is a simply connected, geodesically complete Riemannian man-
ifold H = (M, g) whose scalar curvature R(x) is nonpositive definite and finite, namely —oco <

R(z) <0, Vre M. (Generalization to the case of CAT(k) manifolds!?)

> 1s the Kahler surface associated with the D-type potential.
We assume that X is simply connected ( n,(X) =1 ) and
that its curvature is everywhere finite.

We can classify the isometry groups.

1) The isometry group is elliptic if there exists
a fixed point in the interior of

VI € g T''po =po po€Z

Asymptotic behavior of the J(C) function at the fixed point of elliptic isometries

O—>OO
CO — — 0O J(C) ~ exXp [(SC]



2) The isometry group is parabolic if there exists no
fixed point in the interior of X and just one fixed
point on the boundary o

The range of C is infinite

C € [0, o
B €

or

C' € [0, -

:_OO: OO]

-oo]

3) The isometry group is hyperbolic if there exists
no fixed point in the interior of X and just two
fixed points on the boundary o

The range of C is finite

C € [Ap, Aj]

A1l < oo A <

B € [—oc0, o]

.9




Curv. | Gauge Group V(\/g q;) Values of v | Values of Mother series
" 2

— 852 U(1) (cosh (ﬂ'c‘h) + ;_.-,) U= %\/g =10 It or It with v = %
- 2

— 842 U[:l) (CDSh (I:'q‘i‘) + Ii'_t.) v o= \% p =1 I7 with v = %
- 2

_8p? U(1) (cosh (:3-(:5) n ;..',) v =L w=—1 Iy with v = %

2 : . 7 21 . _ 1 /3 : 1

— 80 SO(1,1) (smh (vq‘;) + ,u) UV =54/3 pw =20 Iy or I with v = 3
N 2

— 802 parabolic (E‘-{P (f} ff)) + ,i.t) U = any p =20 all pure exp are integ.

Table 4: In this table we mention which particular values of the curvature and of the Fayet Iliopoulos
constant yield cosmological potentials that are both associated to constant curvature and integrable
according to the classification of [24]

Flat potentials = chaotic inflation models

Parabolic gauging - Starobinsky model




Results on o-attractors

Definition by Kallosh, Linde

and Roest V($) — [73 ((5)]2

" O— 0O 2
v(d) & Vg(l—exp{— Bl

Universal predictions as [\ — 2 12
xX ng=1-—— , r=a—=
N N?
THE SIMPLEST ATTRACTORS RESULTS: The corresponding.
surface X is non-singular only if
R - b n <2
P(”) ((ﬁ)) = Atanh \/6 For n= 1 the isometry iss parabolic

For n=2 the isometry is elliptic !




The simplest linear attractor n=1

ds?

2 4 ¢ 2 is the metric on the following
d¢” + sech (\/3:) B parametric surface in Mink, ,
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The orbits of the gauged isometry
group on the surface are parabolae



The simplest quadratic attractor n=2

) d B2

+|2

>, 4 a4l ® 2
do -|—§Sech (\/5) tanh (

2 _
S

ds

f(¢) cos(B)
f(¢) sin(B)

Is the metric on the following

parametric surface in E3

The orbits of the gauged isometry
group on the surface are circles



N=1 SUGRA potentials

N=1 SUGRA coupled to n Wess Zumino multiplets
— . i _
Loora = V=g [Rlgl + 2915 0u2' 077" — 2V (2,2)]

9; 05+ K
K = Ka3hler potential

where Jig*
K

V = 4e? exp[K] (gij*DiWh(Z) DjWp(z) — 3|Wh(z)|2) )

If one multiplet, for instance
_SU(1,1) _ 3
Mg = (1) » I = log [—(z—z) ]




Integrable SUGRA model N=1

If in supergravity coupled to one Wess Zumino
multiplet spanning the SU(1,1) / U(1) Kaehler manifold
we introduce the following superpotential

. 6 . _ 2
Wint = 2" + ikz> | 2= 5 /5

we obtain a scalar potential

122272 ((412 + w)z2 — 4iz22 + z%)

‘/int(za 2) —

>\ 2
where 5(z — 2)

z = iexp[h] + b

Truncation to zero axion b=0 is consistent

Vit = 264[) (w + 46[))




V(p)

THIS IS AN INTEGRABLE

MODEL
_ ¥
h = 3

C1 exp [2y¢] + Co exp [(y + 1) ¢]
2

3



The form of the potential

/
/ Hyperbolic: ® >0
/ Runaway potential
7
Trigonometric ® < 0 |
Potential with a
negative extremum: — T
stable AdS vacuum o onoal ™~
[ \\M.




The General Integral in the
trigonometric case

A Y) = Ry = A [Seoshin) ((cosry®® o1 (1,2 3rann) s 4+ 5)
-Y CDSS(T) Sln('r)]
exp [B(r,Y)] = % (4*3052(?)9”0 2F1 (% 1% % smz(?‘)) tan®(r) — SCiz;r;i;) + 20)

h(7,Y) —log (5 cos?(1)%/10 (l 9.3 SIHQ(T)) tan?(r) — YST(T) + 4)

2"10' cos5(T)

The scalar field tries to set down at the negative
extremum but it cannot since there are no spatial flat
sections of AdS space!

The result is a BIG CRUNCH. General Mechanism
whenever there Is a negative extremum of the potential



The
simplest
solution

——
ParametricTins

lim a(7;0) = O
lim_a(7;0)
lim ,0) = —
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2



Phase portrait of the simplest solution

The extremum of the potential is at Pg
—log[5]. It is reached by the solution how-
ever with a non vanishing velocity. There is no
fixed point and the trajectory is from infinity
to infinity.



Y-deformed solutions

An additional zero of the scale factor occurs for t, such that

1 9 3

v — %cosé (7o) csc (7o) (cosg (70)9’!10 o Fy (51 ﬁ; 5; sin? (Tg)) tan? (rp) + 5) = f(70)

Yocomfficiant

Param=tricTlim=

4 /xl (AL

|Y| <Yy = \/Ij 3(10)
\ 3
Region of n¥odu|i space
without early Big Crunch




What new happens forY >Y, ?

s Early Big Bang
and

climbing scalar

from-1to +1
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Hyperbolic solutions

scaleFacter We do not write
.| the analytic form.
| It is also given in
terms of
hypergeometric
functions of
exponentials

CL(TC) ~ Tcg at Big Bang

KGJ(TC) ~ (Tc — Tma:c)%)
|

at Big Crunch




Conclusion

The study of integrable cosmologies within
superstring and supergravity scenarios has
just only begun.

Integrable cases are rare but do exist and
can provide a lot of unexpected information
that illuminates also the Physics behind
the non integrable cases.
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Thank you for attention!
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