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MOTIVATION AND MAIN RESULT

• A great variety of d = 1 supermultiplets.
• A zoo (a jungle) of SQM systems.

CONJECTURE: All such systems can be de-
rived from the trivial SQM model describing free
dynamics in flat complex space

Q =
√

2ψaπa, Q̄ =
√

2ψ̄aπ̄a, H =
1

2
{Q̄,Q} = π̄aπa ,

(a = 1, . . . , d)

by 2 operations:

1. Similarity transformations of holomorphic su-
percharges

2. Hamiltonian reduction



WARM-UP: Witten’s SQM

• Take d = 1. Put z = (x + iy)/
√

2 and im-
pose the constraint pyΨ = −i∂Ψ/∂y = 0 (Ham.
reduction). We obtain

Qfree = pxψ, Q̄
free = pxψ̄ .

• Perform similarity transformations

Q = eWQfreee−W , Q̄ = e−W Q̄freeeW .

We obtain Witten’s SQM (1981)

Q = ψ[p+ iW ′(x)] , Q̄ = ψ̄[p− iW ′(x)]

H =
1

2

[

p2 + (W ′)2 +W ′′(x)(ψ̄ψ − ψψ̄)
]

.



N = 2 SIGMA MODELS

1. Dolbeault complex

Consider

Q = eRQfreee−R, R = ωabψaψ̄b

• anti-Hermitian ω gives unitary eR. Q̄ and H
are then transformed with the same matrix. Just
an unitary transformation of H.

• If ω is Hermitian, eR is not unitary. Gives
new nontrivial Hamiltonian.



We derive

Q =
√

2ψd (eω)dc

[

πc − i (eω)ae

(

∂ce
−ω

)

eb
ψaψ̄b

]

.

H =
(

eω†

eω
)

ab
π̄aπb + . . .

• Nontrivial complex metric.

• The matrices e±ω, e±ω†

can be interpreted as
the complex vielbeins,

(eω)ac → ej
a,

(

e−ω
)

ca
→ ea

j ,
(

eω†
)

ca
→ ej̄

ā,
(

e−ω†
)

ac
→ eā

j̄



• Supercharges can be rewritten as

Q =
√

2ψj
(

πj + iΩj,b̄aψaψ̄b

)

(1)

where Ωk,b̄a are Bismut spin connection for the

metric h = eω†eω and the vielbein e = eω.
• We define also

Q̄ = (deth)−1Q† deth , (2)

• The SQM system (1), (2)
(Hull, 99; E.Ivanov+A.S., 2012)
describes the Dolbeault complex on a generic

complex manifold.



• An additional transformation

Q→ eGQe−G

(G being a function or rather a section of a bundle
on the manifold) gives a twisted Dolbeault complex.

• Still extra rotation with the operator

eR = exp
{

Bjkψ
jψk + Bjklmψ

jψkψlψm + . . .
}

gives complex sigma models with torsion.
[S.Fedoruk+ E. Ivanov+ A.S., 2012]



2. De Rham complex

• Start with the free complex system in d di-
mensions. Set zj = (xj + iyj)/

√
2 and impose the

contraints pj
yΨ = 0. We obtain the free real system

Q = pAψA, Q̄ = pAψ̄A .

• apply the similarity transformationQ→ eRQe−R

with

R = ωABψAψ̄B .

and Hermitian ωAB .



• If ω is real and symmetric, one derives

Q = ψM
(

pM − iΩM,ABψAψ̄B

)

,

where ΩM,AB are standard spin connections for

the (real) vielbeins eM
A = (eω)

M
A and the metric

gMN =
(

e−2ω
)

MN
.

This is the standard de Rham complex.

• For generic Hermitian ω , one derives a qua-
sicomplex sigma model

[E.Ivanov + A.S., 2013]
with the superfield action

S =
1

2

∫

dtdθdθ̄ gMN (X)DXM D̄XN .

with Hermitian (not necessarily real) gMN .
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Figure 1: A rhombus of sigma models. The solid
arrows stand for a similarity transformation and
the dashed arrows — for a Hamiltonian reduction.

One can also obtain this model by Ham. re-
duction from the Dolbeault model on a manifold
with isometries: metric not depending on imagi-
nary parts of zj .



EXTENDED SUPERSYMMETRIES
They show up for some manifolds.

1. Kähler sigma models

• Definition 1 :
Complex manifolds are even-dimensional man-

ifolds where the antisymmetric complex structure
tensor IMN satisfying the conditions

1. I P
M I N

P = −δ N
M .

2. ∂[MIN ]P = I Q
M I S

N ∂[QIS]P .

can be defined.
• Definition 2 :
Kähler manifolds are complex manifolds where

IMN is covariantly constant, ∇P IMN = 0.



• Theorem:
1. on a Kähler manifold, the supercharges

Q = ψM
(

pM − iΩM,ABψAψ̄B

)

,

S = ψMI N
M

(

pN − iΩN,ABψAψ̄B

)

(3)

and their conjugates satisfy the extended N = 4
supersymmetry algebra.

(extended de Rham complex)

2. The supercharges (3) can be obtained from
the flat supercharges

Q = pAψA, S = pAIABψB

by the same similarity transformation.



2. Hyper-Kähler sigma models

• definition :
A hyper-Kähler manifold is a complex mani-

fold possessing 3 different covariantly constant com-
plex structures Ia=1,2,3 that satisfy the quaternion
algebra

IaIb = −δab + ǫabcIc .

The dimension is necessarily 4k.



• Theorem:
1. On a hyper-Kähler manifold, the super-

charges

Q = ψM
(

pM − iΩM,ABψAψ̄B

)

,

Sa = ψM (Ia) N
M

(

pN − iΩN,ABψAψ̄B

)

(4)

and their conjugates satisfy the extended N = 8
supersymmetry algebra.

2. The supercharges (4) can be obtained from
four flat supercharges

Q = pAψA, Sa = pA(Ia)ABψB

by the same similarity transformation.



3. HKT sigma models.

• remark:
For any complex manifold a special affine con-

nection (called Bismut connection ) involving to-
tally antisymmetric torsions exists, with respect to
which the complex structure tensor is covariantly
constant.

• definition :
An HKT manifold is a manifold with 3 complex

structures which
a) satisfy the quaternion algebra
b) their Bismut connections coincide.

• Consider the Dolbeault complex on a HKT
manifold.



• Theorem:
For a HKT manifold, one can write two com-

plex supercharges which satisfy together with their
conjugates the N = 4 superalgebra and can be ob-
tained by the same similarity transformation from
the flat supercharges

Q =
√

2ψk
aπ

k
a , S =

√
2ǫabψ̄

k
aπ

k
b ,

a = 1, 2; k = 1, . . .

• remark:
In four dimensions, HKT metrics are confor-

mally flat.



N = 8 supersymmetric OKT models

• Dolbeault model with 4 complex supercharges.

A similarity transformation making all four su-
percharges flat not explicitly found yet.



REDUCED MODELS

(3, 4, 1) models

• Take a 4-dim conformally flat HKT model.
Assume the conformal factor not to depend on one
coordinate t. Impose the constraint ptΨ = 0.

One obtains a N = 4 sigma model with 3-dim
conf. flat metric [A.S. , 1987]

Qα = f(σjψ̄)α

(

pj − i∂jf ψβψ̄
β
)

Q̄α = (ψσj)
α

(

pj + i∂jf ψβψ̄
β
)



(5, 8, 3) models
[Diaconescu, Entin, 1997; A.S., 2002]

• obtained by Ham. reduction from theOKT
models.

• the simplest model has the conformal har-
monic metric,

ds2 =

(

1 +
C

r3

)

dxMdxM , M = 1, . . . , 5

GAUGE SQM MODELS

• obtained by dimensional reduction from gauge
susy theories

under study



FIELD THEORIES

Party line: whatever is true for SQM should
be true for field theories (?)



• free massless WZ model
The supercharges are

Qα =
√

2

∫

dx
[

Πψα + ∂j φ̄ (σj)αγ̇δ
γ̇γψγ

]

,

Qα̇ =
√

2

∫

dx
[

Π̄ψ̄α̇ + (∂jφ)ψ̄γ̇δ
γ̇γ(σj)γα̇

]

They satisfy the algebra

{Qα, Q̄α̇} = 2(σµ)αα̇Pµ = 2 [δαα̇H + (σj)αα̇Pj ] ,

where

H =

∫

dx
[

Π̄Π + ∂j φ̄∂jφ− iψσj∂jψ̄
]

is the Hamiltonian and ~P is the 3-momentum
operator.



• Put it in finite box and expand in modes.

φ(x) =
∑

n

φne
2πinx, ψ(x) =

∑

n

ψne
2πinx

φ̄(x) =
∑

n

φ̄ne
−2πinx, ψ̄(x) =

∑

n

ψ̄ne
−2πinx

Then it is an SQM system, but ~P plays the role
of central charge. Our philosophy does not apply.

• Still one can represent the Hamiltonian as
the anticommutator {Q̄,Q} with a nonlocal Q.



H and Q expressed in modes.

H =
∑

n

[

Π̄nΠn + (2πn)
2
φ̄nφn + 2πnjψnσjψ̄n

]

and

Q =
∑

n

[

χ1
n

(

P 1
n

+ 2iπf1
n

√
n2

)]

+ χ2
n

(

P 2
n
− 2iπf2

n

√
n2

)

(5)

P 1,2
n
/
√

2 and f1,2
n
/
√

2 being the real and imag-
inary parts of Πn and φn.

χ1,2
n

are fermion eigenvectors of njσj .

• (5) can be sim. transformed to the ”free su-
percharge”

Q(0) =
∑

n

(

P 1
n
χ1

n
+ P 2

n
χ2

n

)


