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Hamiltonization of the general dynamical systems

Let us consider a general dynamical system described by the following
system of the ordinary differential equations [Arnold, 1978]

ẋn = vn(x), 1 ≤ n ≤ N, (1)

ẋn stands for the total derivative with respect to the parameter t.
When the number of the degrees of freedom is even, and

vn(x) = εnm
∂H0

∂xm
, 1 ≤ n,m ≤ 2M, (2)

the system (1) is Hamiltonian one and can be put in the form

ẋn = {xn,H0}0, (3)

where the Poisson bracket is defined as

{A,B}0 = εnm
∂A

∂xn

∂B

∂xm
= A

←
∂

∂xn
εnm

→
∂

∂xm
B, (4)

and summation rule under repeated indices has been used.
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Hamiltonization of the general dynamical systems

Let us consider the following Lagrangian

L = (ẋn − vn(x))ψn (5)

and the corresponding equations of motion

ẋn = vn(x), ψ̇n = −∂vm
∂xn

ψm. (6)

The system (6) extends the general system (1) by linear equation for the
variables ψ. The extended system can be put in the Hamiltonian form
[Makhaldiani, Voskresenskaya, 1997]

ẋn = {xn,H1}1, ψ̇n = {ψn,H1}1, (7)

where first level (order) Hamiltonian is

H1 = vn(x)ψn (8)

and (first level) bracket is defined as

{A,B}1 = A(

←
∂

∂xn

→
∂

∂ψn
−

←
∂

∂ψn

→
∂

∂xn
)B. (9)
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Hamiltonization of the general dynamical systems

Note that when the Grassmann grading [Berezin, 1987] of the conjugated
variables xn and ψn are different, the bracket (9) is known as Buttin
bracket[Buttin, 1996].
In the Faddeev-Jackiw formalism [Faddeev, Jackiw, 1988] for the
Hamiltonian treatment of systems defined by first-order Lagrangians, i.e. by
a Lagrangian of the form

L = fn(x)ẋn −H(x), (10)

motion equations

fmnẋn =
∂H

∂xm
, (11)

for the regular structure function fmn, can be put in the explicit
hamiltonian (Poisson; Dirac) form

ẋn = f−1nm
∂H

∂xm
= {xn, xm}

∂H

∂xm
= {xn,H}, (12)

where the fundamental Poisson (Dirac) bracket is

{xn, xm} = f−1nm, fmn = ∂mfn − ∂nfm. (13)
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Hamiltonization of the general dynamical systems

The system (6) is an important example of the first order regular
hamiltonian systems. Indeed, in the new variables,

y1n = xn, y
2
n = ψn, (14)

lagrangian (5) takes the following first order form

L = (ẋn − vn(x))ψn ⇒ 1

2
(ẋnψn − ψ̇nxn)− vn(x)ψn

=
1

2
yanε

abẏbn −H(y)

= fan(y)ẏ
a
n −H(y), fan =

1

2
ybnε

ba,H = vn(y
1)y2n,

fabnm =
∂f bm
∂yan

− ∂fan
∂ybm

= εabδnm; (15)

corresponding motion equations and the fundamental Poisson bracket are

ẏan = εabδnm
∂H

∂ybm
= {yan,H}, {yan, ybm} = εabδnm. (16)
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Canonical Quantization of the general dynamical systems

To the canonical quantization of this system corresponds

[ŷan, ŷ
b
m] = i~εabδnm, ŷ

1
n = y1n, ŷ

2
n = −i~ ∂

∂y1n
(17)

In this quantum theory, classical part, motion equations for y1n, remain
classical.
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Nambu dynamics

Nabu – Babylonian God
of Wisdom and Writing.

The Hamiltonian mechanics (HM) is in the fundamentals of mathematical
description of the physical theories [Faddeev, Takhtajan, 1990]. But HM is
in a sense blind; e.g., it does not make a difference between two opposites:
the ergodic Hamiltonian systems (with just one integral of motion)
[Sinai, 1993] and (super)integrable Hamiltonian systems (with maximal
number of the integrals of motion).
Nabu mechanics (NM) [Nambu, 1973, Whittaker, 1927] is a proper
generalization of the HM, which makes the difference between dynamical
systems with different numbers of integrals of motion explicit (see,
e.g.[Makhaldiani, 2007] ).
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Nambu dynamics

In the canonical formulation, the equations of motion of a physical system
are defined via a Poisson bracket and a Hamiltonian, [Arnold, 1978]. In
Nambu’s formulation, the Poisson bracket is replaced by the Nambu
bracket with n+ 1, n ≥ 1, slots. For n = 1, we have the canonical
formalism with one Hamiltonian. For n ≥ 2, we have Nambu-Poisson
formalism, with n Hamiltonians, [Nambu, 1973], [Whittaker, 1927].
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Nambu dynamics, system of three vortexes

The system of N vortexes can be described by the following system of
differential equations, [Aref, 1983, Meleshko,Konstantinov, 1993]

żn = i

N
∑

m6=n

γm
z∗n − z∗m

, 1 ≤ n ≤ N, (18)

where zn = xn + iyn are complex coordinate of the centre of n-th vortex,
for N = 3, and the quantities

u1 = ln|z2 − z3|2,
u2 = ln|z3 − z1|2,
u3 = ln|z1 − z2|2 (19)

reduce to the following system

u̇1 = γ1(e
u2 − eu3),

u̇2 = γ2(e
u3 − eu1),

u̇3 = γ3(e
u1 − eu2), (20)
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Nambu dynamics, system of three vortexes

The system (20) has two integrals of motion

H1 =

3
∑

i=1

eui

γi
,H2 =

3
∑

i=1

ui
γi

and can be presented in the Nambu–Poisson form, [Makhaldiani, 1997,2]

u̇i = ωijk
∂H1

∂uj

∂H2

∂uk
= {xi,H1,H2} = ωijk

euj

γj

1

γk
,

where

ωijk = ǫijkρ, ρ = γ1γ2γ3

and the Nambu–Poisson bracket of the functions A,B,C on the
three-dimensional phase space is

{A,B,C} = ωijk
∂A

∂ui

∂B

∂uj

∂C

∂uk
. (21)

This system is superintegrable: for N = 3 degrees of freedom, we have
maximal number of the integrals of motion N − 1 = 2.
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Nambu dynamics, extended quantum mechanics

As an example of the infinite dimensional Nambu-Poisson dynamics, let me
conside the following extension of Schrödinger quantum mechanics
[Makhaldiani, 2000]

iVt = ∆V − V 2

2
, (22)

iψt = −∆ψ + V ψ. (23)

An interesting solution to the equation for the potential (22) is

V =
4(4 − d)

r2
, (24)

where d is the dimension of the spase. In the case of d = 1, we have the
potential of conformal quantum mechanics.
The variational formulation of the extended quantum theory, is given by the
following Lagrangian

L = (iVt −∆V +
1

2
V 2)ψ. (25)
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Nambu dynamics, extended quantum mechanics

The momentum variables are

Pv =
∂L

∂Vt
= iψ, Pψ = 0. (26)

As Hamiltonians of the Nambu-theoretic formulation, we take the following
integrals of motion

H1 =

∫

ddx(∆V − 1

2
V 2)ψ,

H2 =

∫

ddx(Pv − iψ),

H3 =

∫

ddxPψ. (27)

We invent unifying vector notation, φ = (φ1, φ2, φ3, φ4) = (ψ,Pψ , V, Pv).
Then it may be verified that the equations of the extended quantum theory
can be put in the following Nambu-theoretic form

φt(x) = {φ(x),H1,H2,H3}, (28)
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Nambu dynamics, extended quantum mechanics

where the bracket is defined as

{A1, A2, A3, A4} = iεijkl

∫

δA1

δφi(y)

δA2

δφj(y)

δA3

δφk(y)

δA4

δφl(y)
dy

= i

∫

δ(A1, A2, A3, A4)

δ(φ1(y), φ2(y), φ3(y), φ4(y))
dy = idet(

δAk
δφl

). (29)
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Nambu dynamics, M theory

The basic building blocks of M theory are membranes and M5−branes.
Membranes are fundamental objects carrying electric charges with respect
to the 3-form C-field, and M5-branes are magnetic solitons. The
Nambu-Poisson 3-algebras appear as gauge symmetries of superconformal
Chern-Simons nonabelian theories in 2 + 1 dimensions with the maximum
allowed number of N = 8 linear supersymmetries.
The Bagger and Lambert [Bagger, Lambert, 2007] and, Gustavsson
[Gustavsson, 2007] (BLG) model is based on a 3-algebra,

[T a, T b, T c] = fabcd T d (30)

where T a, are generators and fabcd is a fully anti-symmetric tensor.
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Nambu dynamics, M theory

Given this algebra, a maximally supersymmetric Chern-Simons lagrangian is:

L = LCS + Lmatter ,

LCS =
1

2
εµνλ(fabcdA

ab
µ ∂νA

cd
λ +

2

3
fcdagf

g
efbA

ab
µ A

cd
ν A

ef
λ ), (31)

Lmatter =
1

2
BIa
µ B

µI
a −BIa

µ D
µXI

a

+
i

2
ψ̄aΓµDµψa +

i

4
ψ̄bΓIJx

I
cx
J
dψaf

abcd

− 1

12
tr([XI ,XJ ,XK ][XI ,XJ ,XK ]), I = 1, 2, ..., 8, (32)

where Aabµ is gauge boson, ψa and XI = XI
aT

a matter fields. If
a = 1, 2, 3, 4, then we can obtain an SO(4) gauge symmetry by choosing
fabcd = fεabcd, f being a constant. It turns out to be the only case that
gives a gauge theory with manifest unitarity and N = 8 supersymmetry.
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Nambu dynamics, M theory

The action has the first order form so we can use the formalism of the first
section. The motion equations for the gauge fields

fnmabcdȦ
cd
m(t, x) =

δH

δAabn (t, x)
, fnmabcd = εnmfabcd (33)

take canonical form

Ȧabn = fabcdnm

δH

δAcdm
= {Aabn , Acdm} δH

δAcdm
= {Aabn ,H},

{Aabn (t, x), Acdm(t, y)} = εnmf
abcdδ(2)(x− y) (34)
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Nambu-Poisson dynamics of an extended particle with spin in an
accelerator

The quasi-classical description of the motion of a relativistic (nonradiating)
point particle with spin in accelerators and storage rings includes the
equations of orbit motion

ẋn = fn(x), fn(x) = εnm∂mH, n,m = 1, 2, ..., 6;
xn = qn, xn+3 = pn, εn,n+3 = 1, n = 1, 2, 3;

H = eΦ+ c
√

℘2 +m2c2, ℘n = pn −
e

c
An (35)

and Thomas-BMT equations
[Tomas, 1927, Bargmann, Michel,Telegdi, 1959 ] of classical spin motion

ṡn = εnmkΩmsk = {H1,H2, sn}, H1 = Ω · s, H2 = s2,
{A,B,C} = εnmk∂nA∂mB∂kC, (36)
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Nambu-Poisson dynamics of an extended particle with spin in an
accelerator

Ωn =
−e
mγc

((1 + kγ)Bn − k
(B · ℘)℘n
m2c2(1 + γ)

+
1 + k(1 + γ)

mc(1 + γ)
εnmkEm℘k) (37)

where, parameters e and m are the charge and the rest mass of the particle,
c is the velocity of light, k = (g − 2)/2 quantifies the anomalous spin g
factor, γ is the Lorentz factor, pn are components of the kinetic momentum
vector, En and Bn are the electric and magnetic fields, and An and Φ are
the vector and scalar potentials;

Bn = εnmk∂mAk, En = −∂nΦ− 1

c
Ȧn,

γ =
H − eΦ

mc2
=

√

1 +
℘2

m2c2
(38)
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Nambu-Poisson dynamics of an extended particle with spin in an
accelerator

The spin motion equations we put in the Nambu-Poisson form.
Hamiltonization of this dynamical system according to the general approach
of the previous sections we will put in the ground of the optimal control
theory of the accelerator.
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Hamiltonian extension of the spinning particle dynamics

The general method of Hamiltonization of the dynamical systems we can
use also in the spinning particle case. Let us invent unified configuration
space q = (x, p, s), xn = qn, pn = qn+3, sn = qn+6, n = 1, 2, 3; extended
phase space, (qn, ψn) and hamiltonian

H = H(q, ψ) = vnψn, n = 1, 2, ...9; (39)

motion equations

q̇n = vn(q),

ψ̇n = −∂vm
∂qn

ψm (40)

where the velocities vn depends on external fields as in previous section as
control parameters which can be determined according to the optimal
control criterium.
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Electric Dipole Moments (EDM) of Protons and Deuterons

EDM are one of the keys to understand the origin of our Universe
[Sakharov, 1997]. Andrei Sakharov formulated three conditions for
baryogenesis:
1. Early in the evolution of the universe, the baryon number conservation
must be violated sufficiently strongly,
2. The C and CP invariances, and T invariance thereof, must be violated,
and
3. At the moment when the baryon number is generated, the evolution of
the universe must be out of thermal equilibrium.
CP violation in kaon decays is known since 1964, it has been observed in
B-decays and charmed meson decays. The Standard Model (SM)
accommodates CP violation via the phase in the
Cabibbo-Kobayashi-Maskawa matrix.
CP and P violation entail nonvanishing P and T violating electric dipole

moments (EDM) of elementary particles ~d = d~s.
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Electric Dipole Moments (EDM) of Protons and Deuterons

Although extremely successful in many aspects, the SM has at least two
weaknesses: neutrino oscillations do require extensions of the SM and, most
importantly, the SM mechanisms fail miserably in the expected baryogenesis
rate.
Simultaneously, the SM predicts an exceedingly small electric dipole
moment of nucleons 10−33 < dn < 10−31e · cm, way below the current
upper bound for the neutron EDM, dn < 2.9× 10−26e · cm. In the quest for
physics beyond the SM one could follow either the high energy trail or look
into new methods which offer very high precision and sensitivity.
Supersymmetry is one of the most attractive extensions of the SM and
S. Weinberg emphasized [Weinberg, 1993]: ”Endemic in supersymmetric
(SUSY) theories are CP violations that go beyond the SM. For this reason
it may be that the next exciting thing to come along will be the discovery
of a neutron electric dipole moment.”
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Electric Dipole Moments (EDM) of Protons and Deuterons

The SUSY predictions span typically 10−29 < dn < 10−24e · cm and
precisely this range is targeted in the new generation of EDM searches
[Roberts, Marciano, 2010]. There is consensus among theorists that
measuring the EDM of the proton, deuteron and helion is as important as
that of the neutron. Furthermore, it has been argued that T-violating
nuclear forces could substantially enhance nuclear EDM
[Flambaum, Khriplovich, Sushkov, 1986]. At the moment, there are no
significant direct upper bounds available on dp or dd. Non-vanishing EDMs
give rise to the precession of the spin of a particle in an electric field. In the
rest frame of a particle

ṡn = εnmk(Ωmsk + dmEk), Ωm = −µBm, (41)

where in terms of the lab frame fields

Bn = γ(Bl
n − εnmkβmE

l
k),

En = γ(Eln + εnmkβmB
l
k) (42)

Now we can apply the Hamiltonization and optimal control theory methods
to this dynamical system.
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Reduction of the higher order dynamical system

Note that the procedure of reduction of the higher order dynamical system,
e.g. second order Euler-Lagrange motion equations, to the first order
dynamical systems, in the case to the Hamiltonian motion equations, can
be continued using fractal calculus. E.g. first order system can be reduced
to the half order one,

D1/2q = ψ,

D1/2ψ = p⇔ q̇ = p. (43)
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Discrete dynamical systems and Quanputers

Computers are physical devices and their behavior is determined by physical laws. The Quantum
Computations [Benenti, Casati, Strini, 2004 , Nielsen, Chuang, 2000 ], Quantum Computing,
Quanputing [Makhaldiani, 2007.2], is a new interdisciplinary field of research, which benefits from
the contributions of physicists, computer scientists, mathematicians, chemists and engineers.
Contemporary digital computer and its logical elements can be considered as a spatial type of
discrete dynamical systems [Makhaldiani, 2001]

Sn(k + 1) = Φn(S(k)), (44)

where

Sn(k), 1 ≤ n ≤ N(k), (45)

is the state vector of the system at the discrete time step k. Vector S may describe the state and
Φ transition rule of some Cellular Automata [Toffoli, Margolus, 1987].The systems of the type
(44) appears in applied mathematics as an explicit finite difference scheme approximation of the
equations of the physics [Samarskii, Gulin, 1989 ].
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Discrete dynamical systems and Quanputers

Definition: We assume that the system (44) is time-reversible if we can define the reverse
dynamical system

Sn(k) = Φ−1
n (S(k + 1)). (46)

In this case the following matrix

Mnm =
∂Φn(S(k))

∂Sm(k)
, (47)

is regular, i.e. has an inverse. If the matrix is not regular, this is the case, for example, when
N(k + 1) 6= N(k), we have an irreversible dynamical system (usual digital computers and/or
corresponding irreversible gates).
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Discrete dynamical systems and Quanputers

Let us consider an extension of the dynamical system (44) given by the following action function

A =
∑

kn

ln(k)(Sn(k + 1)− Φn(S(k))) (48)

and corresponding motion equations

Sn(k + 1) = Φn(S(k)) =
∂H

∂ln(k)
,

ln(k − 1) = lm(k)
∂Φm(S(k))

∂Sn(k)
= lm(k)Mmn(S(k)) =

∂H

∂Sn(k)
, (49)

where

H =
∑

kn

ln(k)Φn(S(k)), (50)

is discrete Hamiltonian. In the regular case, we put the system (49) in an explicit form

Sn(k + 1) = Φn(S(k)),
ln(k + 1) = lm(k)M−1

mn(S(k + 1)). (51)
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Discrete dynamical systems and Quanputers

From this system it is obvious that, when the initial value ln(k0) is given, the evolution of the
vector l(k) is defined by evolution of the state vector S(k). The equation of motion for ln(k) -
Elenka is linear and has an important property that a linear superpositions of the solutions are
also solutions.
Statement: Any time-reversible dynamical system (e.g. a time-reversible computer) can be
extended by corresponding linear dynamical system (quantum - like processor) which is controlled
by the dynamical system and has a huge computational power,
[Makhaldiani, 2001, Makhaldiani, 2002, Makhaldiani, 2007.2, Makhaldiani, 2011.2].
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(de)Coherence criterion

For motion equations (49) in the continual approximation, we have

Sn(k + 1) = xn(tk + τ) = xn(tk) + ẋn(tk)τ + O(τ2),
ẋn(tk) = vn(x(tk)) +O(τ), tk = kτ,
vn(x(tk)) = (Φn(x(tk))− xn(tk))/τ ;

Mmn(x(tk)) = δmn + τ
∂vm(x(tk))

∂xn(tk)
. (52)

(de)Coherence criterion: the system is reversible, the linear (quantum, coherent, soul) subsystem
exists, when the matrix M is regular,

detM = 1 + τ
∑

n

∂vn

∂xn
+ O(τ2) 6= 0. (53)

For the Nambu - Poisson dynamical systems (see e.g. [Makhaldiani, 2007])

vn(x) = εnm1m2...mp

∂H1

∂xm1

∂H2

∂xm2

...
∂Hp

∂xmp

, p = 1, 2, 3, ...,N − 1,

∑

n

∂vn

∂xn
≡ divv = 0. (54)
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Construction of the reversible discrete dynamical systems

Let me motivate an idea of construction of the reversible dynamical systems by simple example
from field theory. There are renormalizable models of scalar field theory of the form (see, e.g.
[Makhaldiani, 1980])

L =
1

2
(∂µϕ∂

µϕ−m2ϕ2)− gϕn, (55)

with the constraint

n =
2d

d− 2
, (56)

where d is dimension of the space-time and n is degree of nonlinearity. It is interesting that if we
define d as a function of n, we find

d =
2n

n− 2
(57)

the same function !
Thing is that, the constraint can be put in the symmetric implicit form [Makhaldiani, 1980]

1

n
+

1

d
=

1

2
(58)
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Generalization of the idea

Now it is natural to consider the following symmetric function

f(y) + f(x) = c (59)

and define its solution

y = f−1(c− f(x)). (60)

This is the general method, that we will use in the following construction of the reversible
dynamical systems. In the simplest case,

f(x) = x, (61)

we take

y = S(k + 1), x = S(k − 1), c = Φ̃(S(k)) (62)

and define our reversible dynamical system from the following symmetric, implicit form (see also
[Toffoli, Margolus, 1987])

S(k + 1) + S(k − 1) = Φ̃(S(k)), (63)

explicit form of which is

S(k + 1) = Φ(S(k), S(k − 1))
= Φ̃(S(k)) − S(k − 1). (64)
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Generalization of the idea

This dynamical system defines given state vector by previous two state vectors. We have
reversible dynamical system on the time lattice with time steps of two units,

S(k + 2, 2) = Φ(S(k, 2)),
S(k + 2, 2) ≡ (S(k + 2), S(k + 1)),
S(k, 2) ≡ (S(k), S(k − 1))). (65)
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Internal, spin, degrees of freedom

Starting from a general discrete dynamical system, we obtained reversible dynamical system with
internal(spin,bit) degrees of freedom

Sns(k + 2) ≡

(

Sn(k + 2)
Sn(k + 1)

)

=

(

Φn(Φ(S(k)) − S(k − 1)) − S(k))
Φn(S(k))− Sn(k − 1)

)

≡ Φns(S(k)), s = 1, 2 (66)

where

S(k) ≡ (Sns(k)), Sn1(k) ≡ Sn(k), Sn2(k) ≡ Sn(k − 1) (67)

For the extended system we have the following action

A =
∑

kns

lns(k)(Sns(k + 2) −Φns(S(k))) (68)
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Internal, spin, degrees of freedom

and corresponding motion equations

Sns(k + 2) = Φns(S(k)) =
∂H

∂lns(k)
,

lns(k − 2) = lmt(k)
∂Φmt(S(k))

∂Sns(k)

= lmt(k)Mmtns(S(k)) =
∂H

∂Sns(k)
, (69)

By construction, we have the following reversible dynamical system

Sns(k + 2) = Φns(S(k)),
lns(k + 2) = lmt(k)M

−1
mtns(S(k + 2)), (70)

with classical Sns and quantum lns(in the external, background S) string bit dynamics.
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p-point cluster and higher spin states reversible dynamics, or pit string
dynamics

We can also consider p-point generalization of the previous structure,

fp(S(k + p)) + fp−1(S(k + p− 1)) + ...+ f1(S(k + 1))

+f1(S(k − 1)) + ...+ fp(S(k − p)) = Φ̃(S(k)),
S(k + p) = Φ(S(k), S(k + p − 1), ..., S(k − p))
≡ f−1

p (Φ̃(S(k)) − fp−1(S(k + p − 1)) − ...− fp(S(k − p))) (71)

and corresponding reversible p-oint cluster dynamical system

S(k + p, p) ≡ Φ(S(k, p)),
S(k + p, p) ≡ (S(k + p), S(k + p− 1), ..., S(k + 1)),
S(k, p) ≡ (S(k), S(k − 1), ..., S(k − p + 1)), S(k, 1) = S(k). (72)

So we have general method of construction of the reversible dynamical systems on the time
(tame) scale p. The method of linear extension of the reversible dynamical systems (see
[Makhaldiani, 2001] and previous section) defines corresponding Quanputers,

Sns(k + p) = Φns(S(k)),
lns(k + p) = lmt(k)M

−1
mtns(S(k + p)), (73)
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p-point cluster and higher spin states reversible dynamics, or pit string
dynamics

This case the quantum state function lns, s = 1, 2, ...p will describes the state with spin
(p− 1)/2.
Note that, in this formalism for reversible dynamics minimal value of the spin is 1/2. There is not
a place for a scalar dynamics, or the scalar dynamics is not reversible. In the Standard model
(SM) of particle physics, [Beringer et al, 2012], all of the fundamental particles, leptons, quarks
and gauge bosons have spin. Only scalar particles of the SM are the Higgs bosons. Perhaps the
scalar particles are composed systems or quasiparticles like phonon, or Higgs dynamics is not
reversible (a mechanism for ’time arrow’).
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A way to the Solution of the Traveling salesman problem (TSP) with
Quanputing

The NP ?
−
P problem will be solved if for some NP− complete problem, e.g. TSP, a

polynomial algorithm find; or show that there is not such an algorithm; or show that it is
impossible to find definite answer to that question.
TSP means to find minimal length path between N fixed points on a surface, which attends any
point ones. We consider a system where N points with quenched positions x1, x2, ..., xN are
independently distributed on a finite domain D with a probability density function p(x). In
general, the domain D is multidimensional and the points xn are vectors in the corresponding
Euclidean space. Inside the domain D we consider a polymer chain composed of N monomers
whose positions are denoted by y1, y2, ..., yN . Each monomer yn is attached to one of the
quenched sites xm and only one monomer can be attached to each site. The state of the polymer
is described by a permutation σ ∈ ΣN where ΣN is the group of permutations of N objecs.
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A way to the Solution of the Traveling salesman problem (TSP) with
Quanputing

The Hamiltonian for the system is given by

H =
N
∑

n=1

V (|yn − yn−1|) (74)

Here V is the interaction between neighboring monomers on the polymer chain. For convenience
the chain is taken to be closed, thus we take the periodic boundary condition x0 = xN . A
physical realization of this system is one where the xn are impurities where the monomers of a
polymer loop are pinned. In combinatorial optimization, if one takes V (x) to be the norm, or
distance, of the vector x then H(σ) is the total distance covered by a path which visits each site
xn exactly once. The problem of finding σ0 which minimizes H(σ) is known as the traveling
salesman problem (TSP) [Gutin, Pannen, 2002].
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A way to the Solution of the Traveling salesman problem (TSP) with
Quanputing

In field theory language to the TSP we correspond the calculation of the following correlator

G2N (x1, x2, ..., xN ) = Z−1
0

∫

dϕ(x)ϕ2(x1)ϕ
2(x2)...ϕ

2(xN )e−S(ϕ)

=
δ2NF (J)

δJ(x1)2...δJ(xN )2
, F (J) = lnZ(J),

Z(J) =

∫

dϕe−
1

2
ϕ·A·ϕ+J·ϕ = e

1

2
J·A−1·J , A−1(x, y;m) = e−m|x−y|,

Lmin(x1, ..., xN ) = −
d

dm
lnG2Ns + O(e−am)

< A−1 >≡
1

Γ(s)

∫ ∞

0
dmms−1A−1(x, y;m) =

1

|x− y|s

= LsA
−1(x− y; s)

k(d)∆dLsA
−1(x; s) = δd(x)⇒ A(x; s) = k(d)∆dLs,

s = d− 2;ϕ = ϕ(x,m). (75)
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A way to the Solution of the Traveling salesman problem (TSP) with
Quanputing

If we take relativistic massive scalar field, then A = ∆d +m2,

A−1(x) ∼ |x|2−de−m|x|, (76)

and for d = 2, we also have the needed behaviour. Note that G2N is symmetric with respect to
its arguments and contains any paths including minimal length one.
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Renormdynamics

Quantum field theory (QFT) and Fractal calculus (FC) provide Universal
language of fundamental physics (see e.g. [Makhaldiani, 2011]). In QFT
existence of a given theory means, that we can control its behavior at some
scales (short or large distances) by renormalization theory [Collins, 1984]. If
the theory exists, than we want to solve it, which means to determine what
happens on other (large or short) scales. This is the problem (and content)
of Renormdynamics. The result of the Renormdynamics, the solution of its
discrete or continual motion equations, is the effective QFT on a given
scale (different from the initial one).
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p-adic convergence of perturbation theory series

Perturbation theory series (PTS) have the following qualitative form

f(g) = f0 + f1g + ...+ fng
n + ..., fn = n!P (n)

f(x) =
∑

n≥0

P (n)n!xn = P (δ)Γ(1 + δ)
1

1 − x
, δ = x

d

dx
(77)

So, we reduce previous series to the standard geometric progression series.
This series is convergent for |x| < 1 or for
|x|p = p−k < 1, x = pka/b, k ≥ 1. With proper nomalization of the
expansion parametre, the coefficients of the series are rational numbers and
if experimental data indicates for some prime value for g, e.g. in QED

g =
e2

4π
=

1

137.0...
(78)

then we can take corresponding prime number and consider p-adic
convergence of the series. In the case of QED, we have

f(g) =
∑

fnp
−n, fn = n!P (n), p = 137, |f |p ≤

∑

|fn|ppn (79)
In the Yukawa theory of strong interactions (see e.g.
[Bogoliubov, Shirkov, 1959]), we take g = 13,
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p-adic convergence of perturbation theory series

f(g) =
∑

fnp
n, fn = n!P (n), p = 13,

|f |p ≤
∑

|fn|pp−n <
1

1− p−1
(80)

So, the series is convergent. If the limit is rational number, we consider it
as an observable value of the corresponding physical quantity.
In MSSM (see [Kazakov, 2004]) coupling constants unifies at
α−1u = 26.3± 1.9 ± 1. So,

23.4 < α−1u < 29.2 (81)

Question: how many primes are in this interval?

24, 25, 26, 27, 28, 29 (82)

Only one!
Proposal: take the value α−1u = 29.0... which will be two orders of
magnitude more precise prediction and find the consequences for the SM
scale observables.
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p-adic convergence of perturbation theory series

Let us make more explicit the formal representation of (77)

f(x) =
∑

n≥0

P (n)n!xn = P (δ)Γ(1 + δ)
1

1− x
,

= P (δ)

∫ ∞

0
dte−ttδ

1

1− x
= P (δ)

∫ ∞

0
dt

e−t

1 + (−x)t , δ = x
d

dx
(83)

This integral is well defined for negative values of x. The Mathematica
answer for the corresponding integral is

I(x) =

∫ ∞

0
dt

e−t

1 + xt
= e1/xΓ(0, 1/x)/x, Im(x) 6= 0, Re(x) ≥ 0,(84)

where Γ(a, z) is the incomplete gamma function

Γ(a, z) =

∫ ∞

z
dtta−1e−t (85)

For x = 0.001, I(x) = 0.999
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The Goldberger-Treiman relation and the pion-nucleon coupling constant

The Goldberger-Treiman relation (GTR) [Goldberger, Treiman, 1958] plays
an important role in theoretical hadronic and nuclear physics. GTR relates
the Meson-Nucleon coupling constants to the axial-vector coupling constant
in β-decay:

gπNfπ = gAmN (86)

where mN is the nucleon mass, gA is the axial-vector coupling constant in
nucleon β-decay at vanishing momentum transfer, fπ is the π decay
constant and gπN is the π −N coupling constant.
Since the days when the Goldberger-Treiman relation was discovered, the
value of gA has increased considerably. Also, fπ decreased a little, on
account of radiative corrections. The main source of uncertainty is gπN .
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The Goldberger-Treiman relation and the pion-nucleon coupling constant

If we take

απN =
g2πN
4π

= 13 ⇒ gπN = 12.78 (87)

the proton mass mp = 938MeV and fπ = 93MeV, from (86), we find

gA =
fπgπN
mN

=
93×

√
52π

938
= 1.2672 (88)

which is in agreement with contemporary experimental value
gA = 1.2695(29)
In an old version of the unified theory [Heisenberg 1966], for the απN the
following value were found

απN = 4π(1− m2
π

3m2
p

) = 12.5 (89)
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The Goldberger-Treiman relation and the pion-nucleon coupling constant

Determination of gπN from NN,NN̄ and πN data by the Nijmegen group
[Rentmeester et al, 1999] gave the following value

gπN = 13.05 ± .08, ∆ = 1− gAmN

gπNfπ
= .014 ± .009,

13.39 < απN < 13.72 (90)

This value is consistent with assumption gπN = 13 ⇒ απN = 13.45
Due to the smallness of the u and d quark masses, ∆ is necessarily very
small, and its determination requires a very precise knowledge of the gπN
coupling (gA and fπ are already known to enough precision, leaving most of
the uncertainty in the determination of ∆ to the uncertainty in gπN ).
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Renormdynamics of QCD

QCD is the theory of the strong interactions with, as only inputs, one mass
parameter for each quark species and the value of the QCD coupling
constant at some energy or momentum scale in some renormalization
scheme. This last free parameter of the theory can be fixed by ΛQCD, the
energy scale used as the typical boundary condition for the integration of
the Renormdynamic (RD) equation for the strong coupling constant. This
is the parameter which expresses the scale of strong interactions, the only
parameter in the limit of massless quarks. While the evolution of the
coupling with the momentum scale is determined by the quantum
corrections induced by the renormalization of the bare coupling and can be
computed in perturbation theory, the strength itself of the interaction, given
at any scale by the value of the renormalized coupling at this scale, or
equivalently by ΛQCD, is one of the above mentioned parameters of the
theory and has to be taken from experiment.
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Renormdynamics of QCD

The RD equations play an important role in our understanding of Quantum
Chromodynamics and the strong interactions. The beta function and the
quarks mass anomalous dimension are among the most prominent objects
for QCD RD equations. The calculation of the one-loop β-function in QCD
has lead to the discovery of asymptotic freedom in this model and to the
establishment of QCD as the theory of strong interactions
[’t Hooft, 1972, Gross, Wilczek, 1973, Politzer, 1973].
The MS-scheme [1] belongs to the class of massless schemes where the
β-function does not depend on masses of the theory and the first two
coefficients of the β-function are scheme-independent.
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Renormdynamics of QCD

The Lagrangian of QCD with massive quarks in the covariant gauge is

L = −1

4
F aµνF

aµν + q̄n(iγD −mn)qn

− 1

2ξ
(∂A)2 + ∂µc̄a(∂µc

a + gfabcAbµc
c)

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , (Dµ)kl = δkl∂µ − igtaklA

a
µ,(91)

Aaµ, a = 1, ..., N2
c − 1 are gluon; qn, n = 1, ..., nf are quark; ca are ghost

fields; ξ is gauge parameter; ta are generators of fundamental
representation and fabc are structure constants of the Lie algebra
[ta, tb] = ifabctc, we consider an arbitrary compact semi-simple Lie group G.
For QCD, G = SU(Nc), Nc = 3.
The RD equation for the coupling constant is

ȧ = β(a) = β2a
2 + β3a

3 + β4a
4 + β5a

5 +O(a6),

a =
αs
4π

= (
g

4π
)2,

∫ a

a0

da

β(a)
= t− t0 = ln

µ2

µ20
, (92)

µ is the ’t Hooft unit of mass, the renormalization point in the MS-scheme.
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Renormdynamics of QCD

To calculate the β-function we need to calculate the renormalization
constant Z of the coupling constant, ab = Za, where ab is the bare
(unrenormalized) charge. The expression of the β-function can be obtained
in the following way

0 = d(abµ
2ε)/dt = µ2ε(εZa+

∂(Za)

∂a

da

dt
)

⇒ da

dt
= β(a, ε) =

−εZa
∂(Za)
∂a

= −εa+ β(a), β(a) = a
d

da
(aZ1) (93)

where

β(a, ε) =
D − 4

2
a+ β(a) (94)

is D−dimensional β−function and Z1 is the residue of the first pole in ε
expansion

Z(a, ε) = 1 + Z1ε
−1 + ...+ Znε

−n + ... (95)

Since Z does not depend explicitly on µ, the β-function is the same in all
MS-like schemes, i.e. within the class of renormalization schemes which
differ by the shift of the parameter µ.
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Renormdynamics of QCD

For quark anomalous dimension, RD equation is

ḃ = γ(a) = γ1a+ γ2a
2 + γ3a

3 + γ4a
4 +O(a5),

b(t) = b0 +

∫ t

t0

dtγ(a(t)) = b0 +

∫ a

a0

daγ(a)/β(a). (96)

To calculate the quark mass anomalous dimension γ(g) we need to
calculate the renormalization constant Zm of the quark mass
mb = Zmm, mb is the bare (unrenormalized) quark mass. Than we find
the function γ(g) in the following way

0 = ṁb = Żmm+ Zmṁ = Zmm((lnZm)
· + (lnm)·)

⇒ γ(a) = −d lnZm
dt

= ḃ = −d lnZm
da

da

dt
= −d lnZm

da
(−εa+ β(a))

= a
dZm1

da
, b = − lnZm = ln

m

mb
, (97)
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Renormdynamics of QCD

where RD equation in D−dimension is

ȧ = −εa+ β(a) = β1a+ β2a
2 + ... (98)

and Zm1 is the coefficient of the first pole in the ε−expantion of the Zm in
MS-scheme

Zm(ε, g) = 1 + Zm1(g)ε
−1 + Zm2(g)ε

−2 + ... (99)

Since Zm does not depend explicitly on µ and m, the γm-function is the
same in all MS-like schemes.
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Reparametrization and general method of solution of the RD equation

RD equation,

ȧ = β1a+ β2a
2 + ... (100)

can be reparametrized,

a(t) = f(A(t)) = A+ f2A
2 + ...+ fnA

n + ... =
∑

n≥1

fnA
n, (101)

Ȧ = b1A+ b2A
2 + ... =

∑

n≥1

bnA
n,

ȧ = Ȧf ′(A) = (b1A+ b2A
2 + ...)(1 + 2f2A+ ...+ nfnA

n−1 + ...)
= β1(A+ f2A

2 + ...+ fnA
n + ...) + β2(A

2 + 2f2A
3 + ...) + ...

+βn(A
n + nf2A

n+1 + ...) + ...
= β1A+ (β2 + β1f2)A

2 + (β3 + 2β2f2 + β1f3)A
3+

...+ (βn + (n− 1)βn−1f2 + ...+ β1fn)A
n + ...

=
∑

n,n1,n2≥1

Anbn1n2fn2δn,n1+n2−1 (102)
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Reparametrization and general method of solution of the RD equation

=
∑

n,m≥1;m1,...,mk≥0

Anβmf
m1
1 ...fmk

k f(n,m,m1, ...,mk),

f(n,m,m1, ...,mk) =
m!

m1!...mk!
δn,m1+2m2+...+kmk

δm,m1+m2+...+mk
,

b1 = β1, b2 = β2 + f2β1 − 2f2b1 = β2 − f2β1,
b3 = β3 + 2f2β2 + f3β1 − 2f2b2 − 3f3b1 = β3 + 2(f22 − f3)β1,
b4 = β4 + 3f2β3 + f22β2 + 2f3β2 − 3f4b1 − 3f3b2 − 2f2b3, ...
bn = βn + ...+ β1fn − 2f2bn−1 − ...− nfnb1, ... (103)

so, by reparametrization, beyond the critical dimension (β1 6= 0) we can
change any coefficient but β1.
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Reparametrization of the RD equation

We can fix any higher coefficient with zero value, if we take

f2 =
β2
β1
, f3 =

β3
2β1

+ f22 , ... , fn =
βn + ...

(n− 1)β1
, ... (104)

In the critical dimension of space-time, β1 = 0, and we can change by
reparametrization any coefficient but β2 and β3.
From the relations (103), in the critical dimenshion (β1 = 0), we find that,
we can define the minimal form of the RD equation

Ȧ = β2A
2 + β3A

3, (105)

We can solve (105) as implicit function,

uβ3/β2e−u = ceβ2t, u =
1

A
+
β3
β2

(106)

then, as in the noncritical case, explicit solution will be given by
reparametrization representation (101) [Makhaldiani, 2013].
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Reparametrization of the RD equation

If we know somehow the coefficients βn, e.g. for first several exact and for
others asymptotic values (see e.g. [Kazakov, Shirkov, 1980]) than we can
construct reparametrization function (101) and find the dynamics of the
running coupling constant. This is similar to the action-angular canonical
transformation of the analytic mechanics (see e.g.
[Faddeev, Takhtajan, 1990]).
Statement: The reparametrization series for a is p-adically convergent,
when βn and A are rational numbers.
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Reparametrization of the anomalous dimensions

Let us take the the anomalous dimension of some quantity

γ(a) = γ1a+ γ2a
2 + γ3a

3 + ... (107)

and make reparametrization

a = f(A) = A+ f2A
2 + f3A

3 + ... (108)

γ(a) = γ1(A+ f2A
2 + f3A

3 + ...) + γ2(A
2 + 2f2A

3 + ...) + γ3(A
3 + ...)

= Γ1A+ Γ2A
2 + Γ3A

3 + ...
Γ1 = γ1, Γ2 = γ2 + γ1f2, Γ3 = γ3 + 2γ2f2 + γ1f3, ... (109)

When γ1 6= 0, we can take Γn = 0, n ≥ 2, if we define fn as

f2 = −γ2
γ1
, f3 = −γ3 + 2γ2f2

γ1
= −γ3 − 2γ22/γ1

γ1
, ... (110)

So, we get the exact value for the anomalous dimension

γ(A) = γ1A = γ1f
−1(a) = γ1(a+ γ2/γ1a

2 + γ3/γ1a
3 + ... :) (111)
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QCD, parton model, valence quarks and αs = 2

While it has been well established in the perturbative regime at high
energies, QCD still lacks a comprehensive solution at low and intermediate
energies, even 40 years after its invention. In order to deal with the wealth
of non-perturbative phenomena, various approaches are followed with
limited validity and applicability. This is especially also true for lattice
QCD, various functional methods, or chiral perturbation theory, to name
only a few. In neither one of these approaches the full dynamical content of
QCD can yet be included. Basically, the difficulties are associated with a
relativistically covariant treatment of confinement and the spontaneous
breaking of chiral symmetry, the latter being a well-established property of
QCD at low and intermediate energies. As a result, most hadron reactions,
like resonance excitations, strong and electroweak decays etc., are nowadays
only amenable to models of QCD. Most famous is the constituent-quark
model (CQM), which essentially relies on a limited number of effective
degrees of freedom with the aim of encoding the essential features of low-
and intermediate-energy QCD.
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QCD, parton model, valence quarks and αs = 2

The CQM has a long history, and it has made important contributions to
the understanding of many hadron properties, think only of the fact that
the systematization of hadrons in the standard particle-data base follows
the valence-quark picture. Namely the Q dependence of the nucleon form
factor corresponds to three-constituent picture of the nucleon and is well
described by the simple equation [Brodsky, Farrar,1973],
[Matveev, Muradyan,Tavkhelidze,1973]

F (Q2) ∼ (Q2)−2 (112)

It was noted [Voloshin, Ter-Martyrosian, 1984] that parton densities given
by the following solution

M2(Q
2) =

3

25
+

2

3
ω32/81 +

16

75
ω50/81,

M̄2(Q
2) =M s

2 (Q
2) =

3

25
− 1

3
ω32/81 +

16

75
ω50/81,

MG
2 (Q2) =

16

25
(1− ω50/81),

ω =
αs(Q

2)

αs(m2)
, Q2 ∈ (5, 20)GeV 2, b = 9, αs(Q

2) ≃ 0.2 (113)
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QCD, parton model, valence quarks and αs = 2

of the Altarelli-Parisi equation

Ṁ = AM, MT = (M2, M̄2,M
s
2 ,M

G
2 ),

M2 =

∫ 1

0
dxx(u(x) + d(x)), M̄2 =

∫ 1

0
dxx(ū(x) + d̄(x)),

M s
2 =

∫ 1

0
dxx(s(x) + s̄(x)), MG

2 =

∫ 1

0
dxxG(x), Ṁ = Q2 dM

dQ2

A = −a(Q2)







32/9 0 0 −2/3
0 32/9 0 −2/3
0 0 32/9 −2/3

−32/9 −32/9 −32/9 2






, a = (

g

4π
)2(114)

with the following ”valence quark” initial condition at a scale m

M2(m
2) = 1, M̄2 =M s

2 =MG
2 (m2) = 0, αs(m

2) = 2 (115)

gives the experimental values

M2 = 0.44, M̄2 =M s
2 = 0.04, MG

2 = 0.48 (116)
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QCD, parton model, valence quarks and αs = 2

So, for valence quark model (VQCD), αs(m
2) = 2. We have seen, that for

πρN model απρN = 3, and for πN model απN = 13. It is nice that
α2
s + α2

πρN = απN . This relation can be seen, e.g., by considering pion
propagator in the low energy πN model and in superposition of higher
energy VQCD and πρN models.
Note that to αs = 2 corresponds

g =
√
4παs = 5.013 = 5+ (117)
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Nonperturbative Renormdynamics, AdS/CFT duality

The AdS/CFT duality provides a gravity description in a (d +
1)-dimensional AdS space-time in terms of a flat d-dimensional
conformally-invariant quantum field theory defined at the AdS asymptotic
boundary
[Maldacena, 1999],[Gubser,Klebanov,Polyakov, 1998],[Witten, 1998]. Thus,
in principle, one can compute physical observables in a strongly coupled
gauge theory in terms of a classical gravity theory. The β-function for the
nonperturbative effective coupling obtained from the LF holographic
mapping in a positive dilaton modified AdS background is [Brodsky, 2010]

β(αAdS) =
dαAdS
lnQ2

= − Q2

4k2
αAdS(Q

2)

= αAdS(Q
2) ln

αAdS(Q
2)

α(0)
≤ 0 (118)

where the physical QCD running coupling in its nonperturbative domain is

αAdS(Q
2) = α(0)e−Q

2/4k2 (119)

So, this renormdynamics of QCD interpolates between IR fixed point α(0),
which we take as α(0) = 2, and UV fixed point α(∞) = 0.
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Nonperturbative renormdynamics with massive gluons

For the QCD running coupling [Diakonov, 2003]

α(q2) =
4π

9 ln(
q2+m2

g

Λ2 )
(120)

where mg = 0.88GeV, Λ = 0.28GeV, the β−function of renormdynamics is

β(q2) = −α
2

k
(1− c exp(− k

α
)),

k =
4π

9
= 1.40, c =

m2
g

Λ2
= (3.143)2 = 9.88 (121)

for nontrivial (IR) fixed point we have

αIR =
k

ln c
= 0.61 (122)

For α(0) = 2, we predict the gluon mass as

mg = Λe
k

2α(0) = 1.42Λ = mN/3, Λ = 220MeV. (123)
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Nonperturbative renormdynamics with massive gluons

The ghost-gluon interaction in Landau gauge has been determined either
from DSEs [Zwanziger, 2002],[Lerche,von Smekal, 2002], or the Exact
Renormalization Group Equations (ERGEs)
[Pawlowski et al, 2004],[Fischer,Gies, 2004] and yield an IR fixed point

α(0) =
2π

3Nc

Γ(3− 2k)Γ(3 + k)Γ(1 + k)

Γ(2− k)2Γ(2k)
=

8.9115

Nc
= 2.970,

Nc = 3, k = (93 −
√
1201)/98 = 0.5954 (124)

Note that, from this formula for k = 0.6036 we have α(0) = 3 and for
k = 0.36 we have α(0) = 2.
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