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Background

The Hamiltonian formulation for higher-derivative theories

S =

∫
dtL, L = L(ϕ, ϕ̇, ϕ̈, . . . ,

(n)
ϕ),

(n)
ϕ=

dnϕ

dtn

has been developed by Ostrogradski [Ostrogradski,1850].

HO =
n∑

i=1

Pi Q̇i − L(ϕ, ϕ̇, ϕ̈, . . . ,
(n)
ϕ)
∣∣∣(i)
ϕ=

(i)
ϕ (Q,P)

Qi =
(i−1)
ϕ , Pi =

n∑
j=i

(
− d

dt

)j−i ∂L
∂

(j)
ϕ
, i = 1, . . . , n

For n > 1, the Ostrogradski Hamiltonian is not bounded from below because
it is linear in Pi , i = 1, . . . , n − 1.

The constrained systems may have bounded Hamiltonian with account of
constraints. This is a very special case, the number of such models is small.
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Instability problem and solution

When the Hamiltonian of the model is unbounded, the theory becomes
unstable. The typical problems are

Ghost states (quantum instability)

Runaway/explosive behavior of solutions (classical instability)
No selection rules for interaction vertices

Solution: To find the Hamiltonian formulation with a bounded Hamiltonian.

If the Hamiltonian is Hermitian and bounded from below, the energy
spectra is also bounded from below (quantum stability)

If the level surfaces H = E are bounded for all E ’s, the motion is
bounded for all the initial data (classical stability)

Even if the bounded Hamiltonian is given from outside, it ensures the clas-
sical and quantum stability of the theory.
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Model

Given the free Pais-Uhlenbeck oscillator equation of motion

0 =
1

Ω

n∏
i=1

( d2

dt2
+ ω2

i

)
ϕ(t) , (1)

where
0 < ω1 < ω2 < . . . < ωn

and Ω > 0 is a dimensional factor,

to find: a nonlinear deformation of equation (1) such that

The nonlinear theory admits the Hamiltonian formulation

The Hamiltonian of the nonlinear theory is bounded from below

Remark: We do not require that the nonlinear term follows from least
action principle

V (ϕ, ϕ̇, . . . ,
(2n)
ϕ ) 6= δ

δϕ

(∫
dtLint(ϕ, ϕ̇, . . . ,

(n)
ϕ)
)
.
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Model

Given the free Pais-Uhlenbeck oscillator equation of motion

0 =
1

Ω

n∏
i=1

( d2

dt2
+ ω2

i

)
ϕ(t)+V (ϕ, ϕ̇, . . . ,

(2n)
ϕ ) , (1)

where
0 < ω1 < ω2 < . . . < ωn

and Ω > 0 is a dimensional factor,

to find: a nonlinear deformation of equation (1) such that

The nonlinear theory admits the Hamiltonian formulation

The Hamiltonian of the nonlinear theory is bounded from below

Remark: We do not require that the nonlinear term follows from least
action principle

V (ϕ, ϕ̇, . . . ,
(2n)
ϕ ) 6= δ

δϕ

(∫
dtLint(ϕ, ϕ̇, . . . ,

(n)
ϕ)
)
.
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Nonlinear oscillator of order 2n

Let us consider a model, whose dynamics is described by the equation

1

Ω

n∏
i=1

(d2

dt2
+ ω2

i

)
ϕ+ U ′

( n∑
i=1

αiPiϕ
)

= 0 , U ′(ϕ) =
∂U(ϕ)

∂ϕ
, (2)

where

Pi =
∏
j 6=i

1

ω2
j − ω2

i

(d2

dt2
+ ω2

j

)
, V = U ′

( n∑
i=1

αiPiϕ
)
,

U(ϕ) is some function of dynamical variable ϕ(t) and αi 6= 0 are the
parameters of the theory.

Outline:

In the free limit (U = 0), equation (2) describes the free Pais-Uhlenbleck
oscillator of order 2n.

Equation (2) is not Lagrangian unless U = 0 or αi = 1.
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ϕ− and ξ−representations

There is one-to-one correspondence between the solutions of 2n-th order
equation

1

Ω

n∏
i=1

(d2

dt2
+ ω2

i

)
ϕ+ U ′

( n∑
i=1

αiPiϕ
)

= 0 ,

and the system of n second-order differential equations

1

Ω

[∏
j 6=i

(
ω2
j − ω2

i

)](d2

dt2
+ ω2

i

)
ξi + U ′

( n∑
i=1

αiξi

)
= 0, i = 1, . . . , n .

This correspondence is established by the relations

ϕ =
n∑

i=1

ξi , ξi = Piξ.
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Bounded Hamiltonian

The ξ−representation system is Lagrangian. The Hamiltonian formulation
reads

ξ̇i = {ξi ,H} , π̇i = {πi ,H} ,

where the Poisson bracket is canonical {ξi , πj} = δij and the Hamiltonian
has the form

H =
1

2

n∑
i=1

(π2
i

γi
+ γiω

2
i ξ

2
i

)
+U

( n∑
i=1

αiξi

)
, γi = −αi

Ω

[∏
j 6=i

(
ω2
j −ω2

i

)]
(3)

In contrast to Ostragradski’s Hamiltonian, the Hamiltonian (3) may be bo-
unded from below if

(−1)iαi > 0 , U ≥ 0 .

The interactions with alternating sign of α’s are not compatible with least
action principle. The stable interactions of form (2) are not variational.
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Further generalizations

The bounded Hamiltonians for more general class of theories may be found
by the method of nonlinear factorization [arXiv:1407.8481]. It applies to the
fourth-order theories with equations of motion of the form

PQϕ+U ′(αQϕ−βPϕ) = 0 , U ′(αQϕ−βPϕ) =
∂U(ϕ)

∂ϕ

∣∣∣
ϕ=αQϕ−βPϕ

where U(ϕ) is a function of fields, α, β 6= 0 are constants, P, Q are self-
adjoint second-order matrix linear differential operators subjected to the
relation P +Q = 1.

Each theory with factorizable structure is equivalent to the system of second-
order Lagrangian equations

Pξ + U ′(αξ − βη) = 0, Qξ + U ′(αξ − βη) = 0

ϕ = ξ + η, ξ = Qϕ , η = Pϕ.
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Summary and Perspectives

We have shown the following.

The higher-derivative theories can admit bounded from below Hamil-
tonian even if the Ostrogradski Hamiltonian is unbounded.

For the factorizable theories, the bounded Hamiltonian may be con-
structed by the method of nonlinear factorization.

This method is well applied to the wide class of higher-derivative mod-
els, including the Pais-Uhlenbeck oscillator, higher-derivative scalar
field, Podolsky electrodynamics.

The non-variational interaction vertices are compatible with stability of
nonlinear theory.

The open question:

Is there any generalization of method of nonlinear factorization to more
general class of theories?

And couple of slides instead conclusion.
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Lagrangian counterpart

The energy is a Lagrangian counterpart of the Hamiltonian. It is the Noether
current associated with invariance of action under the time translations.

When the energy is bounded form below, the theory is stable.

For non-Lagrangian equations, the correspondence between symmetries and
conservation laws is established by the Lagrange anchor.

To prove stability, we should find the bounded from below conservation law
and the Lagrange anchor that associates it with time translation.

And it is possible to do this for all factorizable theories...
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Lagrange anchor for nonlinear oscillator

For the nonlinear oscillator, the bounded conservation law I reads

I =
1

2Ω

n∑
i=1

[
αi

∏
j 6=i

(
ω2
j − ω2

i

)((Piϕ
dt

)2
+ ω2

i (Piϕ)2
)]

+ U
( n∑

i=1

αiPiϕ
)

and the Lagrange anchor V has the form

V = −
n∑

i=1

Pi

αi
−W

[d2U

dϕ2

( n∑
i=1

αiPiϕ
)
·
]
,

where

W = Ω
∑
i<j

[(αi

αj
+
αj

αi
− 2
)∏

k 6=i

1

ω2
k − ω2

i

∏
l 6=j

1

ω2
l − ω2

j

∏
s 6=i ,s 6=j

(d2

dt2
+ ω2

s

)]
By construction, the Lagrange anchor V associates the conservation law I
with time translation.
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