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Notion of Faddeev’s modular double
Faddeev’s example. Consider the standard Heisenberg algebra (HA)

generated by operators x ,p

[x , p] = i .

Introduce the algebra T (quantum torus or Weyl pair) with generators

U,V

U = eiαx , V = eiβp ,

(α, β are parameters) with commutation relations

U V = q V U q = e−i αβ .

One can think that HA can be obtained from T by means of log -
function. So we have got a question:
Is the algebra T of quantum torus (in above realization) is ”equivalent”
(representation theories are identical) to the Heisenberg algebra?

The answer is NO!
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Notion of Faddeev’s modular double

To demonstrate this we note that from HA one can construct another

”dual” algebra T̃ of quantum torus

Ũ = eiα̃x , Ṽ = eiβ̃p .

Ũ Ṽ = q̃ Ṽ Ũ , q̃ = e−i α̃β̃ ,

with another parameters α̃, β̃. Then, if

α̃ = 2π
β , β̃ = −2π

α ,

the generators U,V of T commute with Ũ Ṽ of T̃ and parameters q and
q̃ are related by modular transformation

q = e−i αβ = ei2πτ → q̃ = e−i α̃β̃ = e− i2π
τ (τ → τ̃ = −1

τ
) .

Thus, the dual algebra T̃ centralizes the algebra T and vice versa.
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The double of algebras T and T̃ is called modular double.

The modular double of T and T̃ is ”equivalent” to HA!
The notion of the modular double was introduced by L.D.Faddeev in
1999.

We use this simple example of the modular double to explain what kind
of discrete evolution will be considered in the case of quantum groups.
Let x be a coordinate and p be a momentum of a free particle. The
time evolution is defined by the evolution operator

Θ(t) = exp(
i
2

p2 t) ,

and we have the standard formulas for free evolution

p → Θ(t) · p ·Θ(t)−1 = p , x → Θ(t) · x ·Θ(t)−1 = x + p t .
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From these formulas, for coordinates U,V of quantum torus T, we
obtain the evolution

V → Θ(t) · V ·Θ(t)−1 = V ,

U → Θ(t) · U ·Θ(t)−1 = U eiαtp e
iα2 t

2 .

Note that for special time interval t = β
α = − β̃

α̃ we obtain intrinsic
discrete evolution on T

V → Θ · V ·Θ−1 = V ,

U → Θ · U ·Θ−1 = U V q− 1
2 ,

(1)

where we denote Θ = Θ(βα ). Since in (1) the first relation is [V , Θ] = 0
one can search the operator Θ as a function θ(V ). The second relation
in (1) gives the equation:

θ(V ) = q
1
2 θ(qV )V .
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For |q| < 1, this equation can be solved in terms of the Jacobi
theta-function

θ(V ) =

∞∏

n=1

(1 + qn−1/2V )

∞∏

n=1

(1 + qn−1/2V−1) .

The operator θ(V ) describes the evolution of the coordinates V ,U of

the torus T for the finite time interval t = β
α = − β̃

α̃ .
In view of the condition |q| < 1 the evolution operator θ(V ) is called
compact.
We stress that the operator θ(V ) leaves the dual torus T̃ in rest:

Ṽ → θ(V ) · Ṽ · θ(V )−1 = Ṽ ,

Ũ → θ(V ) · Ũ · θ(V )−1 = Ũ ,
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The free motion evolution operator for finite time interval t = α
β :

Θ = exp(
i
2

p2 t)

∣∣∣∣
t=α

β

,

should be proportional to the ”compact” evolution operator θ(V ,q):

Θ = exp( i
2p2 t)

∣∣∣
t=α

β

∼ C(Ṽ , Ũ) · θ(V ,q) ,

where the ”constant” C(Ṽ , Ũ) should commute with U,V .

In the same way as before for T one can consider the discrete time
evolution of the coordinates Ṽ , Ũ of the dual torus T̃. We note that

α, β → α̃, β̃ ⇒ V ,U → Ṽ , Ũ
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Thus the discrete evolution operator Θ̃ for Ṽ , Ũ is defined by Θ with
substitution α, β → α̃, β̃. Recall that β̃

α̃ = −β
α = −t and it means that

Θ̃ = Θ|α=α̃;β=β̃ = exp(
i
2

p2 t)

∣∣∣∣
t=−α

β

= Θ−1 ,

Ṽ → Θ−1 · Ṽ ·Θ = Ṽ , Ũ → Θ−1 · Ũ ·Θ = Ũ Ṽ q̃− 1
2 .

We again look for the solution Θ−1 ∼ θ(Ṽ , q̃) which is given as before

Θ−1 ∼ θ(Ṽ , q̃) =
∞∏

n=1

(1 + q̃n−1/2Ṽ )
∞∏

n=1

(1 + q̃n−1/2Ṽ−1) ,

and which is ”compact” (for |q̃| < 1) evolution operator for dual
quantum torus T̃ . Finally the combination of both results gives the
answer for complete discrete time evolution operator Θ(βα) in the form
of well known identity for theta-functions

exp
(

i
2

p2 β

α

)
∼ Θ(V ,q)

Θ(Ṽ , q̃)
.
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The important remark is that the operator

exp
(

i
2

p2 β

α

)
∼ Θ(V ,q)

Θ(Ṽ , q̃)
.

is well defined for any values of q and q̃ !!!

Below we obtain the similar formulas in the context of a discrete
evolution of SLq(N)- quantum top considered by Faddeev and
Alekseev.

We will consider as the analog of Weyl pair {U,V} (quantum torus) the
”Heisenberg double” of the RTT algebra and the RLRL - or reflection
equation algebra.
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1. R-matrices
Let V be a finite dimensional C - linear space. For any operator
X ∈ End(V ⊗ V ) and integers i > 0, j > 0 we denote

Xi i+1 := I⊗(i−1) ⊗ X ⊗ I⊗(j−1) ∈ End(V⊗(i+j)) ,

where I ∈ Aut(V ) is the identity operator.

Def 1. An operator R̂ ∈ Aut(V ⊗ V ) is called an R-matrix if

R̂12 R̂23 R̂12 = R̂23 R̂12 R̂23 ∈ Aut(V ⊗ V ⊗ V ) .

Def 2. An R-matrix R̂ is called a Hecke type R-matrix if

(R̂ − q 1)(R̂ + q−1 1) = 0 , (1 = I ⊗ I) .

() 11 / 28



1. R-matrices
Consider the set of antisymmetrizers A(k)(q) which can be defined by
recurrent relations: A(1) = 1,

A(k+1) =
[k ]q

[k + 1]q
A(k)

(
qk

[k ]q
− R̂k

)
A(k) ∈ End(V⊗(k+1)) .

Def 3. A Hecke type R-matrix R̂ for q – generic is called GLq(n) type
R-matrix if it satisfies

1.) A(n+1) = 0 ⇔ A(n)
( qn

[n]q
I − R̂n

)
A(n) = 0 , 2.) rk(A(n)) = 1 .

An example – the standard Drinfeld-Jimbo’s GLq(n) type R-matrix:

R̂◦ =

n∑

i ,j=1

qδij Eij ⊗ Eji + (q − q−1)
∑

i<j

Eii ⊗ Ejj ,

where (Eij)kl := δikδjl are (n × n) matrix units.
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Def 4. R̂ is called skew invertible if ∃Ψ ∈ End(V⊗2) such that

R̂ i1m2
j1k2

Ψk2i3
m2j3

= Ψi1m2
j1k2

R̂k2i3
m2j3

= δi1
j3
δi3

j1
.

With any skew invertible R̂ we associate matrix D ∈ End(V ):

D1 = Tr(2)Ψ12 ,

where Tr(i) – trace in i-th space. Then, we define a quantum trace

(q-traces) for any quantum matrix Y

Y 7→ TrD(Y ) := Tr(D Y ) ,

which possesses many remarkable properties, e.g.,

TrD (2)(R̂
ε
12 Y1 R̂−ε

12 ) = I1 TrD(Y ) (ε = ±1) ,

Tr
D(1,...,k)

([
R̂i i+1, Y(1...k)

])
= 0 (∀ 1 < i < k , ∀Y(1...k)) .
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3. RTT and Reflection equation (RE) algebras
Quantized functions over matrix group (RTT algebra)
(L.Faddeev,N.Reshetikhin,L.Takhtajan (1989)).

Let R̂ be a skew invertible R-matrix. Consider an associative unital

algebra generated by matrix components ‖T i
j ‖dim V

i ,j=1 which satisfy

R̂12 T1 T2 = T1 T2 R̂12 .

The extension of this algebra by a set of components ‖(T−1)i
j‖dim V

i ,j=1 :
∑

k

T i
k (T

−1)k
j =

∑

k

(T−1)i
k T k

j = δi
j 1 ,

is a Hopf algebra with coproduct, counit and antipode mappings:

∆(T i
j ) =

∑

k

T i
k ⊗ T k

j , ǫ(T i
j ) = δi

j , S(T i
j ) = (T−1)i

j .

This algebra is called an RTT algebra and denoted by F [R̂].
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Def 5. Let R̂ be a skew invertible R-matrix. An associative unital
algebra L[R̂] with generators ‖Li

j‖dim V
i ,j=1 satisfying relations

L1 R̂12 L1 R̂12 = R̂12 L1 R̂12 L1 ,
is called a reflection equation (RE) algebra.

Consider REA L[R̂] for Hecke type R̂ and introduce elements (a0 = 1)

ai = Tr
D(1,...,i)

(
A(i)L1 . . .Li

)
, pi = TrD(L

i) (i ≥ 1)

where L1 := L1 , Lk+1 := R̂k Lk R̂−1
k . Elements pi and ai are central

in REA L[R̂] and called power sums and
elementary symmetric functions, respectively.
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Proposition 1. Quantum Newton relations and q - Cayley-Hamilton

identity hold for REA L[R̂]

kq ak + (−1)k
k−1∑
j=0

(−q)jaj pk−j = 0 ∀1 ≤ k ≤ n ,

n∑
j=0

(−q)j aj Ln−j = 0 .

Proposition 2. The set of elementary symmetric functions
{aj , j = 1, ...,n} generate the whole center in REA L[R̂GLq(n)].
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Def 5. A spectral extension of REA L[R̂] for GLq(n) type R̂-matrix is
the extension of L[R̂] by a set of invertible central elements µα

(α = 1, . . . ,n) such that
[µα, Li

j ] = 0

and
ai =

∑
1≤j1<···<ji≤n

µj1µj2 . . . µji ∀ i = 1, . . . ,n.

It means that the Cayley-Hamilton identity can be written in factorized
form

n∑

j=0

(−q)j aj Ln−j =

n∏

α=1

(
L − qµαI

)
= 0 .

We need projectors

Pα =
∏

β 6=α

(q−1L − µβ)

(µα − µβ)
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4. Heisenberg double of RTT and RE algebras

Def 6. A Heisenberg double (HD) algebra of the RTT and RE algebras

is an associative unital algebra generated by elements T i
j ∈ F [R̂] and

Li
j ∈ L[R̂] subject to commutation relations

R̂12 T1 T2 = T1 T2 R̂12 .

L1 R̂12 L1 R̂12 = R̂12 L1 R̂12 L1 ,

γ2 T1 L2 = R̂12 L1 R̂12 T1 , (γ ∈ {C\0}) .

Parameter γ will be fixed below.
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4. Heisenberg double of RTT and RE algebras

In the limit

T i
j → T i

j , Li
j → δi

j + h ℓi
j + . . . , R ij

km → δi
mδ

j
k + h δi

kδ
j
m + . . . .

we obtain from HD algebra structure relations the following Poisson
brackets

{T i
j , T k

m} = 0 , {ℓi
j , ℓ

k
m} = 2(δi

mℓ
k
j − δk

j ℓ
i
m),

{ℓi
j , T k

m} = δk
j T i

m.

Thus, the HD algebra is a quantization of the Poisson
structure on T ∗(GL(n)).

HD algebra is interpreted as quantum group
cotangent bundle, where RTT algebra is a base and
RE algebra is a bundle.
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For the spectral extension of HD we have additional commutators of T i
k

and Li
k with spectral elements {µα}

[µα, Li
k ] = 0,

µα · T i
k − γ2 T i

k · µα = (1 − q2) µα · (Pα · T )i
k .

The last commutation relation can be rewritten equivalently

γ2 (Pβ · T )i
k · µα = q2δαβ µα · (Pβ · T )i

k .
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5. Discrete time evolution on quantum group
cotangent bundle
Consider sequence of automorphisms on the HD (F ♯L)[R̂]

{T , L} θk

−→ {T (k), L(k)} , ∀ k = 0,1,2, . . . ,

R̂12 T1(k)T2(k) = T1(k)T2(k)R̂12

R̂12 L1(k)R̂12 L1(k) = L1(k) R̂12 L1(k)R̂12 ,

γ2 T1(k)L2(k) = R̂12 L1(k) R̂12 T1(k) .

Here k is a discrete time. For any R̂-matrix these automorphisms can
be realized as (Faddeev–Alekseev discrete time evolution for the
quantum top)

T (k) = Lk · T , L(k) = L .

One can compare with: U(k) = (q
1
2 V )k · U , V (k) = V .
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5. Discrete time evolution for SLq(n) case
Consider the case when RTT algebra is SLq(n) quantum group. In this
case we require

detq(T ) = Tr(1,...,n)
(
A(n)T1 T2 · · ·Tn

)
= 1 .

Discrete time evolution must conserve this relation, i.e., we have
detq(Lk T ) = 1 (∀k > 0). This leads to the conditions

an = Tr
D(1,...,n)

(
A(n)L1 L2 · · · Ln

)
= q−1 , γn = q .

We will investigate the discrete evolution for HD of SLq(N) type. The
key point is that ∃ the special evolution operator Θ:

T (k + 1) = L T (k) = ΘT (k)Θ−1 , L(k + 1) = Θ L(k)Θ−1 = L .

For the case of ”ribbon Hopf algebra” the Faddeev-Alekseev evolution
is given by Θ ≡ ribbon element.
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6. Evolution operator Θ for SLq(n) case.
Thus, we have for the first shift k = 1:

L T = ΘT Θ−1 , L = Θ LΘ−1 , (2)

and we assume Θ = Θ(µ1, . . . , µn), where
∏n

α=1 µα = q−1.

For the HD with R̂-matrix of the SLq(n)-type the evolution operator
Θ(µα) is a solution of first eq. in (2) which is written as

Θ
(
∇α(µβ)

)
= q−1µ−1

α Θ(µβ) ∀α = 1, . . . ,n , (3)

where ∇α are finite shift operators ∇α(µβ) := q2Xαβ µβ and the matrix
X is a Gram matrix

Xαβ = 〈~e ∗
α , ~e

∗
β 〉 = δαβ − 1

n
(α, β = 1, . . . ,n) ,

for the set of vectors: ~e ∗
α = 1

n (−1, . . . ,−1︸ ︷︷ ︸
(α−1) times

,n −1,−1, . . . ,−1 ).
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As a result we obtain (special solution):
Proposition. In case |q| < 1 a solution is expressed via
multidimensional theta-function

Θ(1)(µα) = θ(~p,Ω) =
∑

~k∈Zn−1

exp
{
πi (~k , Ω~k) + 2πi (~k , ~p)

}
,

where τ is a modular parameter, Ω is (n − 1)× (n − 1) matrix of
periods

q = exp(2πi τ), q1/nµα = exp(2πi pα),
∑n

α=1 pα = 0,

Ωαβ = 2τ
n A∗

αβ = 2τ (δαβ − 1
n ) ,

——————————————————————————————
Expression Θ(1)(µα) converges either if |q| < 1, or if qm = 1 (the series
is truncated).
The (n − 1)× (n − 1) matrix A∗

αβ is a Gram matrix of a lattice A∗
n−1 dual

to the root lattice An−1 = sl(n), since we have A∗−1
αβ = Aαβ = (δαβ + 1)

and Aαβ = (eα,eβ), where vectors eα = ( 0, . . . ,0︸ ︷︷ ︸
(α−1) times

,1,0, . . . ,0,−1)

form the basis in the root space of sl(n).
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7. ”Noncompact” solution for the evolution operator Θ
Proposition. In case |q| ≥ 1 one can find another solution:

Θ(2)(pα) := exp
(
− πi

2τ

n∑
β=1

p2
β

)
,

of the evolution equations.
Written in the independent variables ~p = {p1, . . . ,pn−1} it reads

Θ(2)(~p) = exp
(
−πi

τ

∑

1≤α≤β≤n−1

pαpβ

)
= exp

{
−πi (~p, Ω−1~p)

}
,

where the inverse matrix of periods is

Ω−1
αβ =

1
2τ

(δαβ + 1) =
1
2τ

Aαβ ,

and Aαβ = 〈eα,eβ〉 is the Gram matrix for the root lattice An−1. Note
that the logarithmic change of variables: log(µα)/(2πi) = pα − τ/n
which was rather superficial in case of Θ(1), is inevitable for the
derivation of Θ(2).
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Finally, we comment on relation between the two evolution operators

Θ(1) = θ(~p, Ω) and Θ(2) = exp
{
−πi (~p, Ω−1~p)

}
. The relation is based

on the identity for multidimensional theta functions

θ(Ω−1~p, −Ω−1) =
(

det
(
Ω/i

)) 1
2

exp
{
πi(~p, Ω−1~p)

}
θ(~p, Ω) .

With our particular matrix of periods Ω we find

Θ(2)(~p) =
1√
n

(2τ
i

) n−1
2 θ(~p, Ω)
θ(Ω−1~p, −Ω−1)

.

Note that theta function θ(Ω−1~p, −Ω−1) (in the denominator)
commutes with the elements of HD (defined by SLq(n) R̂-matrix) and
can be thought as an evolution operator on a ‘modular dual’ quantum
cotangent bundle associated to dual R̂-matrix of SLq̃(n) type.
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8. Example
In the SLq(2) case the evolution operator Θ(1) becomes the Jacobi
theta function (L.D. Faddeev (1995)):

Θ(1)(µ1) =
∑
k∈Z

q
1
2 k(k+1)µk

1 =
∑
k∈Z

exp(πi k2τ + 2πi kz1) = θ3(z1; q) ,

where q = exp(2πi τ), µ1 = exp(2πi z1)q−1/2. A multiplicative form for
Θ is

1
η(q)Θ

(1)(µ1) =
∞∏

n=1
(1 + qnµ1)(1 + qn−1/µ1) =

∞∏
n=1

(1 + qnσ1 + q2n−1) ,

where η(q) =
∏∞

n=1(1 − qn). For dual evolution operator we have

Θ̃(1)(µ1) =
∑

k∈Z

exp(−πi
τ

k2 +
2πi
τ

kz1) =
∑

k∈Z

q̃
1
2 k(k+1)µ̃k

1 ,

where q̃ = exp(−2πi
τ ), µ̃1 = exp(2πi

τ z1)q̃−1/2.
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Summary

What is a dual HD for the standard HD of SLq(n) type (HD
centralizes HD and vice versa)?
Explicit expressions for evolution operator Θ in the case of
B,C,D quantum groups. In these cases Gram matrices A
and their dual A∗ = (A)−1 are such that B and C type
evolution operators are dual to each other.
3D analogue of RE (tetrahedron RE) were proposed in
A.P.Isaev and P.P.Kulish, Mod. Phys. Lett. A12 (1997) 427
(hep-th/9702013). The analog of 3D RTT algebra is also
known: R123T1T2T3 = T3T2T1R123. What kind of
cross-commutation relations are needed to describe
discrete evolution in 3D case?
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