Dunkl angular momenta algebra and Calogero–Moser systems

Misha Feigin joint work with Tigran Hakobyan

ArXiv:1409.2480

School of Mathematics and Statistics, University of Glasgow

Supersymmetry in Integrable Systems

Dubna

Misha Feigin Dunkl angular momenta algebra and Calogero–Moser systems

(D) (A) (A) (A) (A)

Plan of the talk

- Root systems and associated Calogero-Moser systems
- Integrability through Dunkl operators
- Angular (spherical) Calogero-Moser systems
- Ounkl angular momenta algebra
- gl(n) version

Root systems and Coxeter groups

Let $V = \mathbb{R}^n$, let (u, v) be the standard bilinear form in V. Let $\mathcal{R} \subset V$ be a Coxeter root system. That is

- $\forall \alpha \in \mathcal{R} \quad s_{\alpha}\mathcal{R} = \mathcal{R},$ where s_{α} is orthogonal reflection with respect to the hyperplane $(\alpha, x) = 0.$
- If $\alpha, \beta \in \mathcal{R}$ and $\alpha \sim \beta$ then $\alpha = \pm \beta$.

Let $W = \langle s_{\alpha} | \alpha \in \mathcal{R} \rangle$ be the corresponding Coxeter group. By Chevalley's theorem $\mathbb{C}[x_1, \ldots, x_n]^W \cong \mathbb{C}[P_1, \ldots, P_n]$, where P_i are homogeneous polynomials.

If \mathcal{R} is irreducible then \mathcal{R} is equivalent to one of $A_r, B_r, D_r, E_6, E_7, E_8, F_4, H_3, H_4, I_{2m}$.

Example

$$\mathcal{R} = A_{n-1}$$
: vectors $\pm (e_i - e_j), \quad 1 \leq i < j \leq n.$
 $\mathcal{W} = S_n$ - symmetric group.

 $\mathcal{R} = B_n \text{: vectors } \pm (e_i \pm e_j), \quad 1 \leq i < j \leq n \quad \text{and} \quad \pm e_i, \quad 1 \leq i \leq n.$

Suppose $g : \mathcal{R} \to \mathbb{C}$ is *W*-invariant. Let $g_{\alpha} = g(\alpha)$, $\alpha \in \mathcal{R}$. There are corresponding Calogero-Moser type integrable systems [Olshanetsky, Perelomov'77]:

$$\mathcal{H} = \Delta - \sum_{lpha \in \mathcal{R}_+} rac{g_lpha (g_lpha - 1)(lpha, lpha)}{(lpha, x)^2},$$

where exactly one of the roots $\pm \alpha$ enters \mathcal{R}_+ . The case $\mathcal{R} = A_{n-1}$ gives the Calogero–Moser Hamiltonian

$$H = \Delta - \sum_{i < j}^{n} \frac{2g(g-1)}{(x_i - x_j)^2}.$$

Misha Feigin

Dunkl angular momenta algebra and Calogero-Moser systems

Rational Cherednik algebra Quantum integrals

Rational Cherednik algebra

Let $\mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_n]$, $\mathbb{C}[y] = \mathbb{C}[y_1, \dots, y_n]$. The rational Cherednik algebra [Etingof, Ginzburg'00]:

$$\mathcal{H} = \mathcal{H}_g(W) = < \mathbb{C}[x], \mathbb{C}[y], \mathbb{C}W > /(relations).$$

Relations: $x_i x_j = x_j x_i$, $y_i y_j = y_j y_i$, $wp(x) = p(w^{-1}x)w$, $wp(y) = p(w^{-1}y)w$, $x_i y_j - y_j x_i - \delta_{ij} = \sum a_\alpha s_\alpha$ for some $a_\alpha \in \mathbb{C}$. Equivalently, define the algebra by its faithful representation on functions: x_i acts by multiplication; $w(f(x)) = f(w^{-1}(x))$ for $w \in W$; y_i acts as Dunkl operator ∇_i :

$$abla_i = \partial_{x_i} - \sum_{\alpha \in \mathcal{R}_+} \frac{g_{\alpha}(\alpha, e_i)}{(\alpha, x)} s_{\alpha}.$$

Note that Dunkl operators commute $[\nabla_i, \nabla_j] = 0$. As a vector space $\mathcal{H} \cong \mathbb{C}[x] \otimes \mathbb{C}[y] \otimes \mathbb{C}W$.

Rational Cherednik algebra Quantum integrals

Integrability of Calogero-Moser systems

Let $P(x) \in \mathbb{C}[x]^W$. Define $L_P = \operatorname{Res} P(\nabla)$ - restriction of $P(\nabla)$ to invariant functions, it is a differential operator. Then [Heckman'91]

•
$$[L_P, L_Q] = 0$$
 for any $P, Q \in \mathbb{C}[x]^W$.

• Let
$$P(x) = x^2 = \sum_{i=1}^n x_i^2$$
. Then

$$L_P = L_{x^2} = H = \Delta - \sum_{\alpha \in \mathcal{R}_+} \frac{g_\alpha(g_\alpha - 1)(\alpha, \alpha)}{(\alpha, x)^2},$$

the Calogero-Moser operator associated with \mathcal{R} .

Angular Calogero–Moser system Angular Calogero–Moser systems through Dunkl operators

Angular Calogero–Moser systems

 H_{Ω} is obtained by separating spherical and radial coordinates:

$$H = \partial_r^2 + rac{N-1}{r}\partial_r - rac{H_\Omega}{r^2}.$$

- Calogero'71
- Intertwiners of quantum systems at integer coupling, F'03
- Extensive study of integrals, superintegrability, derivation from matrix model, Hakobyan, Karakhanyan, Krivonos, Lechtenfeld, Nersessian, Saghatelian, Yeghikyan'09-14
- Eigenfunctions, Dunkl, Xu'01; F, Lechtenfeld, Polychronakos'13

Angular Calogero–Moser system Angular Calogero–Moser systems through Dunkl operators

Angular Calogero–Moser systems through Dunkl operators

Define Dunkl angular momenta

$$M_{ij}=x_i\nabla_j-x_j\nabla_i.$$

Let $\mathbf{M}^2 = \sum_{i < j}^n M_{ij}^2$.

Theorem

$$Res\mathbf{M}^2 = H_{\Omega} + const.$$

To take care of the constant, we modify $\widetilde{M}^2 = M^2 - S(S - n + 2)$, where $S = \sum_{\alpha \in \mathcal{R}_+} g_\alpha s_\alpha$. Then

$$Res\widetilde{\mathbf{M}}^2 = H_{\Omega}.$$

The centre PBW property Quadratic algebra

Dunkl angular momenta algebra, the centre

Define the algebra $\mathcal{H}_g^{so(n)}(W)$ generated by the operators M_{ij} and $\mathbb{C}W$. It is a deformation of the skew product of the algebra \mathcal{M} generated by the usual angular momenta operators and the group algebra $\mathbb{C}W$.

Theorem

The centre of the algebra $\mathcal{H}_g^{so(n)}(W)$ is generated by \widetilde{M}^2 and constants.

Remark

In type A_{n-1} the Casimir element by Kuznetsov'96

Remark

 $\mathcal{H}_{g}^{so(n)}(S_{n}) \not\subset \mathcal{H}_{g}^{so(n+1)}(S_{n+1})$ for $g \neq 0$. It makes it not possible to define a complete family of commuting elements by taking the central generators for different n.

The centre PBW property Quadratic algebra

Poincaré-Birkhoff-Witt theorem

Let \mathcal{V} be a vector space. Let $\alpha: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ be antisymmetric, bilinear. Consider the \mathbb{C} -algebra

 $U(\mathcal{V}) = \langle \mathcal{V} \rangle / (\text{relations}),$

where relations are $xy - yx = \alpha(x, y)$, $x, y \in \mathcal{V}$. $U(\mathcal{V})$ has filtration by the degree, $F_0 \subset F_1 \subset \ldots \subset F_i \subset \ldots = U(\mathcal{V})$. Define associated graded algebra $grU(\mathcal{V}) = \oplus F_i/F_{i-1}$. Let $S(\mathcal{V}^*)$ be the polynomial algebra on \mathcal{V} and consider the natural surjection $\varphi : S(\mathcal{V}^*) \to U(\mathcal{V})$. Then $U(\mathcal{V})$ is said to have the PBW property if φ is isomorphism, i.e. $Ker\varphi = 0$.

 $U(\mathcal{V})$ satisfies PBW if and only if \mathcal{V} is a Lie algebra, i.e. α satisfies the Jacobi identity.

イロン イヨン イヨン ・ ヨン

The centre PBW property Quadratic algebra

Theorem (Etingof, Ginzburg'00)

The algebra $\mathcal{H}_g(W)$ has PBW property. Equivalently, as a vector space $\mathcal{H}_g(W) \cong \mathbb{C}[x] \otimes \mathbb{C}[y] \otimes \mathbb{C}W$.

Theorem

The algebra $\mathcal{H}_{g}^{so(n)}(W)$ has PBW property.

Equivalently, a basis is given by a basis in the algebra $\mathcal{M} \ltimes \mathbb{C}W$, where \mathcal{M} is the algebra of the usual angular momenta. Explicitly, a basis has the form

 $M_{i_1j_1}^{n_1}\dots M_{i_kj_k}^{n_k}\sigma \qquad \text{with} \quad i_s < j_s, \quad n_s > 0, \quad k \ge 0, \quad \sigma \in W$ with the ordering

 $i_1 \leq \ldots \leq i_k,$ and $i_s = i_{s+1} \Rightarrow j_s < j_{s+1},$

and non-crossing condition $i_s < i_{s'} < j_s \Rightarrow j_{s'} \leq j_{s}$, is if $j_{s} = 0$

The centre PBW property Quadratic algebra

Graphical interpretation

Graphical interpretation of a sample monomial, which does not contain intersecting angular momentum bonds:

() < </p>

The centre PBW property Quadratic algebra

Quadratic property

We describe all the defining relations of the generators of the algebra $\mathcal{H}_{g}^{so(n)}(W)$. Let $M_{\xi\eta} = \sum \xi_i \eta_j M_{ij}$ for $\xi, \eta \in \mathbb{C}^n$. Let $\sum 2g_{\pi}(\alpha, \xi)(\alpha, \eta)$

$$S_{\xi\eta} = (\xi,\eta) + \sum_{lpha \in \mathcal{R}_+} \frac{2g_{lpha}(lpha,\xi)(lpha,\eta)}{(lpha,lpha)} s_{lpha} \in \mathbb{C}W.$$

Theorem

The Dunkl angular momenta satisfy

$$[M_{\xi\eta}, M_{\varphi\psi}] = M_{\xi\psi}S_{\eta\varphi} + M_{\eta\varphi}S_{\xi\psi} - M_{\xi\varphi}S_{\eta\psi} - M_{\eta\psi}S_{\xi\varphi},$$

 $M_{\xi\eta}M_{\varphi\psi} + M_{\eta\varphi}M_{\xi\psi} + M_{\varphi\xi}M_{\eta\psi} = M_{\varphi\xi}S_{\eta\psi} + M_{\xi\eta}S_{\varphi\psi} + M_{\eta\varphi}S_{\xi\psi}$ for any $\xi, \eta, \varphi, \psi \in \mathbb{C}^n$.

The centre PBW property Quadratic algebra

Graphically, the non-crossing condition is illustrated as follows:

The homogeneous part is the Plücker relations for the Grassmanian of two-dimensional planes.

gl(n) version

The algebra $H_g^{gl(n)}(W)$ is defined to be generated by the operators $E_{ij} = x_i \nabla_j$ and by $\mathbb{C}W$.

Theorem

 $H_g^{gl(n)}(W)$ is a PBW algebra with quadratic defining relations

$$E_{ij}E_{kl}-E_{il}E_{kj}=E_{il}S_{kj}-E_{ij}S_{kl},$$

$$[E_{ij}, E_{kl}] = E_{il}S_{jk} - S_{il}E_{kj} + [S_{kl}, E_{ij}].$$

A basis is given by

$$E_{i_1j_1}^{n_1}\ldots E_{i_kj_k}^{n_k}\sigma, \qquad \sigma\in W,$$

where $i_1 \leq \ldots \leq i_k$ and $j_1 \leq \ldots \leq j_k$.

Theorem

The centre of $H_g^{gl(n)}(W)$ is generated by constants and

$$\rho = \sum_{i=1}^{n} E_{ii} + \sum_{\alpha \in \mathcal{R}_{+}} g_{\alpha} s_{\alpha}.$$

Consider another representation of the algebra where $E_{ij} \rightarrow \frac{1}{2}(x_i - \nabla_i)(x_j + \nabla_j)$. Then

$$-2Res(
ho)
ightarrow H - \mathbf{x}^2 + const,$$

the Calogero-Moser operator in the harmonic confinement.

Further directions

- Liouville integrability
- Further study of algebras $H_g^{so(n)}(W)$, $H_g^{gl(n)}(W)$, and their classical versions. Representation theory, relations with singularities
- Geometrical interpretations of algebras H^{so(n)}_g(W), H^{gl(n)}_g(W) via Cherednik algebras for varieties with finite group actions (Etingof'04)

・ロト ・同ト ・ヨト ・ヨト