
Polynomial Integrals in Dilaton Gravity

Evgeny Davydov

JINR

Dubna, 2014



New models in gravitation and cosmology come from

• Inflation

• Dark energy

Recent observations suggest that the models can be complicated

• BICEP2: two stages of inflation?

• BOSS: not ΛCDM?

E.g. Wiggly Whipped Inflation scenarios[1]:

V (φ) = γψp + λ[(ψ − φ0)q + ψq
01]θ(ψ − ψ0),

V (φ) = γψp + λ(ψ − ψ0)pθ(ψ − ψ0),

ψ0 — transition value of inflaton.

[1] D. K. Hazra, A. Shafieloo, G. F. Smoot and A. A. Starobinsky, Wiggly
Whipped Inflation, arXiv:astro-ph.CO/1405.2012.



So there is a motivation to study a variety of models. Dilaton
gravity provides useful technique.

A fairly general higher-dimensional field theories can be reduced to
two-dimensional effective DGS models by taking into account their
space-time symmetries. We specify the following generic action
with µ = (t, r):

L =
√
−g
[
φR(g) + W (ϕ)(∇µφ)2 + Z (φ)∇µψ∇µψ + X (φ;ψ)

]
where φ is the dilaton field, and ψ is a scalar field. Here we can
describe both cosmological and static states, considering effective
theory of some (may be unknown) fundamental theory.



See how this works for Affine Generalization of Gravity (the gravity
theory in a non - Riemannian space with a symmetric connection):
The action is proportional to tensor density which is a square root
of det(sij + λaij), where sij and aij are symmetric and
antisymmetric parts of Ricci tensor. Reformulated in terms of
standard GR there arise effective action

L =
√
−g
[
−2Λ [det(δji + λf ji )]ν + R(g) + cam

2 g ijaiaj

]
,

where ν ≡ 1/(D − 2) and ca is also a parameter depending on D.
gij is metric and fij — field tensor of additional (due to
non-Riemannian space) massive vector field ai . Spherical
dimensional reduction from D = 4 to D = 2 provides dilaton
gravity with

X (ϕ;ψ) = 2φ−1/2 − 2Λ
√
φ

[
1 + ψ2/λ2Λ2φ2

]1/2
Z (φ) = −1/m2φ .



Switching to one-dimensional models in Dilaton gravity, describing
static and cosmological (not necessarily FRW) states with metric

ds2 = h(τ)(−dτ2 + dσ2)

we can write

L = s
[
h−1ḣφ̇+ W (φ)ϕ̇2+ Z (ϕ)ψ̇2

]
− s−1h X (ϕ,ψ) , (1)

where s is a Lagrangian multiplier; variation with respect to it
leads to Hamiltonian constraint:

H = s
[
h−1ḣφ̇+ W (φ)φ̇2+ Z (φ)ψ̇2

]
+ s−1h X (φ, ψ) = 0 .

In what follows we prefer variables

Ḟ = h−1ḣ + W (φ)φ̇, ϕ̇ = s φ̇ .



The choice of dynamical variables may depend on the underlying
theory. Consider a toy-model[2] with conformal invariance
gµν → e−2σ(x)gµν , ψ → eσ(x)ψ:

L = Na3

[
1

2

ψ2

12
R − ψ̇2

2N2
− λ

4
ψ4

]

In the gauge ψ =
√

6 it has a de-Sitter inflationary solution

a = e
√
3λt , while in gauge a = 1 it describes the conformon field

dynamics in flat space: ψ′′ = λψ3. The Hamiltonian constraints
will look like

H = − 1

12a
p2a + 9λa3 = 0, or H = −1

2
p2ψ +

λ

4
ψ4 = 0.

[2]R. Kallosh and A. Linde, Hidden Superconformal Symmetry of the
Cosmological Evolution, JCAP 1401, 020 (2014);
arXiv:hep-th/1311.3326.



One of the important steps during the models investigation is a
search for the first integrals what improves our knowledge about
the space of solutions and may reveal hidden symmetries. We are
focusing on this subject in our talk.

Universality of Dilaton gravity formalism requires a method for the
first integrals search which should

• deal with a variety of gauge/variable choices in diverse models

• take into account the presence of Hamiltonian constraint.

For this we refined the Whittaker’s program of searching for the
first integrals which are polynomial in momenta:

if H = ai (q)pi and I = bj(q)pj then {H, I} = ck(q)pk .

It is convenient to work in space of polynomials.



In the symmetric algebra representation the polynomial of d-th
order in momenta pi read as

Id = b0 + bipi + bijpipj + bijkpipjpk + . . . ≡
d∑

n=0

bn(q)p�n ,

where � is a symmetrized tensor product and p�n is n-th tensor
power of pi with respect to this product. Equivalently, we may
consider vectors Id = (b0, .., bn, 0, . . .) ∈ S(p∗) with coordinates in
symmetric tensors. The key object is a Schouten bracket which
assigns for two symmetric tensors of ranks k and n the symmetric
tensor of rank (n + k − 1):

Lbnak ≡ Sym

 n∑
r=1

N∑
mr=1

bm1..mr ..mn∂mr a
l1..lk −

k∑
r=1

N∑
lr=1

∂lrb
m1..mnal1..lr ..lk

 .



The Poisson bracket then acts on S(p∗) as

{Hg , Id} = Yg+d−1, where cn =
∑

k=0..d ,
m=0..g ,

k+m−1=n

Lbk jm .

And a first integral should satisfy the condition

{Hg , Id} = Vd−1 � Hg , vanishing on shell!

Normally the condition {Hg , Id} = Yg+d−1 = 0 is required, which
implies the vanish of all coefficients of Yg+d−1, say
cn = 0, n = 0..(g + d − 1). Now the conditions on cn are

cn =
∑

m+k=n

vm � ak, n = 0..(d + g − 1),

containing free tensor coefficients vm.



For the most common quadratic Hamiltonians

H2 = aij(q)pipj + U(q) ≡ a2p
�2 + a0

we can derive a compact equation

{H2, I2s+ε}|H2=0 = 0, if
s+ε∑
n=0

(−a0)n(a2)�(s+ε−n)� c2n+1−ε = 0 ,

where
cn = Lbn+1a0 + Lbn−1a2.

Note that in this case we also can use grading on S(p∗). Since H2

belongs to an even subspace (containing only tensor components
with even rank), the set of first integrals Id also decomposes into
even and odd subspaces: Id → I2s+ε.



• Well suited for analytic calculus programs (e.g. Maple).

• May consider classes of Hamiltonians: when the structure of
kinetic part aij and the shape of potential U are known yet
not exactly specified.

• May consider classes of symmetries: when the shape of first
integral is specified the set of allowed Hamiltonians with
desired structure will be found.

In what follows we solve equations for linear integrals,
a2c0 − a0c2 = 0:

aij∂bU − ULbaij = 0,

and quadratic integrals, a2 � c1 − a0c3 = 0:

Sym
[
alm(bik∂kU − aik∂kU)− U(bik∂ka

lm − ∂kbilakm)
]

= 0 .



Now for one-dimensional Dilaton Gravity Hamiltonian

H = Ḟ ϕ̇− sZ ψ̇2+ s−1ΩXeF = 0

we have qi = (F , ϕ, ψ) and the momenta pi = (ϕ̇, Ḟ ,−2sZ ψ̇).
We see that the in such coordinates the structure of Hamiltonian
kinetic term, a12 = a21 = 1/2, a33 = −1/4sZ is defined up to
function sZ , which is gauge and coupling of scalar kinetic term to
dilaton. Obviously, we can also choose the gauge s = 1/Z , which
ensures us that for any Dilaton Gravity there will be a constant
kinetic part, which leads to the following allowed linear integrals:

bF = C6ψ
2/2 + (C4F + C7)ψ + C1F

2/2 + C9F + C8,

bϕ= C1ψ
2/2 + (C2 + C4ϕ)ψ + C6ϕ

2/2 + C5ϕ+ C3,

bψ= C4ψ
2/2 + (C1F + C6ϕ+ C5 + C9)ψ/2 + (C4ϕ+ C2)F/2 +

+C7ϕ/2 + C10,

No other variants! Then solving the equation

(∂b + C1F + C6ϕ+ 2C4ψ + C5 + C9)U = 0

we can found what integrals do exist for specified systems.



The number of equations in components rapidly grows with the
increase of polynomials order. Thus for quadratic integrals we
consider some special cases.

Consider, for instance, the quadratic integrals which does not
depend on the momenta component p1. This reduces the number
of equations, so we can find two allowed quadratic integrals:

H = p1p2 − C3β
′(ϕ)p23/4 + [C1ψ

2 + C2ψ + C4 − C1C3β(ϕ)]β′(ϕ)eF = 0,

I
(1)
2 = p22/β

′2 − 2C1C3e
F , I

(2)
2 = 2p2p3/β

′ + (4C1ψ + 2C2)eF ,

{H, I (1)2 } = 2Hp2β
′′/β′3, {H, I (2)2 } = 2Hp3β

′′/β′2, {I (1)2 , I
(2)
2 } = 0. (2)

Thus we found in Dilaton Gravity an integrable model with quite
non-trivial potential which is quadratic in scalar field ψ.



Conclusion and Outlook

• Easy to obtain negative results, i.e. find that something does
not go. For example, we found that affine gravity even in
most simple cases does not admit integrable analogues of the
Schwarzschild solution.

• Next we will apply this approach to the models describing
inflationary scenarios.

THANK YOU!


