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In this talk (if the time permit us) we will make some remarks 
concerning the physical consequences arising from some 
mathematical models based in non-degenerate Riemannian 
superspaces. Emphasis is made on the relation of such models 
with with the underlying supersymplectic structure and hints 
towards a quantum gravity theory 
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ON QUANTIZATION (SOME TROUBLES…NON TREATED HERE) 

 Not unique(?) 

 Not related with the underlying symmetries of the 
physical system 

 Based on prescriptions instead physical principles 

 Etc etc…. 

 

 

 (e.g: models based in weakly reductive geometries 
are canonically quantized)  



OUTLINE 

 Statistical/information theoretical results 

 Spacetime discretization, quantum gravity and 

other issues 

 Remarks (concluding?) 



INFORMATION METRIC FROM RIEMANNIAN 

SUPERSPACES. 

 The Fisher's information metric is introduced in order to find the real meaning of the probability 
distribution in classical and quantum systems described by Riemaniann non-degenerated 
superspaces. In particular, the physical rôle played by the coefficients a and a∗ of the pure fermionic 
part of a genuine emergent metric solution, obtained in previous work is explored. To this end, two 
characteristic viable distribution functions are used as input in the Fisher definition: first, a 
Lagrangian generalization of the Hitchin Yang-Mills prescription and, second, the probability current 
associated to the emergent non-degenerate superspace geometry. We have found that the metric 
solution of the superspace allows establish a connexion between the Fisher metric and its quantum 
counterpart, corroborating early conjectures by Caianiello et al. This quantum mechanical extension 
of the Fisher metric is described by the CP¹ structure of the Fubini--Study metric, with coordinates a 
and a∗ 

Diego Julio Cirilo-Lombardo 

Bogoliubov Laboratory of Theoretical Physics Joint Institute for Nuclear Research 

Victor I. Afonso 

Unidade Acadêmica de Física, Universidade Federal de Campina Grande, PB, Brasil 

Phys.Lett.A376 (2012) 3599 



INTRODUCTION 

  The problem of giving an unambiguous quantum 
mechanical description of a particle in a general spacetime 
has been repeatedly investigated.  

 The introduction of supersymmetry provided a new approach 
to this question, however, some important aspects 
concerning the physical observables remain not completely 
understood, classically and quantically speaking.    

  The superspace concept, on the other hand, simplify 
considerably the link between ordinary relativistic systems 
and `supersystems', extending the standard (bosonic) 
spacetime by means of a general (super)group manifold, 
equipped with also fermionic (odd) coordinates 



INTRODUCTION 

 In [1] we introduced, besides other supersymmetric quantum systems of physical interest, a 

particular N=1 superspace  

 That was made with the aim of studying a superworld-line quantum particle (analogously to the 

relativistic case) and its relation with SUGRA theories [2] 

 The main feature of this superspace is that the supermetric, which is the basic ingredient of a 

Volkov-Pashnev particle action [4]is invertible and non-degenerate, that is, of G4 type in the 

Casalbuoni's classification 

 As shown in [2,3]the non-degeneracy of the supermetrics (and therefore of the corresponding 

superspaces) leads to important consequences in the description of physical systems.  

 In particular, notorious geometrical and topological effects on the quantum states, namely, 

consistent mechanisms of localization and confinement, due purely to the geometrical character of 

the Lagrangian.  

 Also an alternative to the Randall-Sundrum (RS) model without extra bosonic coordinates, can be 

consistently formulated in terms of such non degenerated superspace approach, eliminating the 

problems that the RS-like models present at the quantum level [2,3] 
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INTRODUCTION 

 

 As the Lagrangian of this particular supermetric bring us localized states showing a Gaussian behaviour, it is 

of clear interest to analyze the probabilistic and information theoretical meaning of such a geometry.  

 To this specific end, the Fisher metric [7](Fisher-Rao in the quantum sense [8])have been considered in 

several works in order to provide a geometrical interpretation of the statistical measures. 

  Fisher's information measure (FIM) was advanced already in the 1920's decade, well before the advent of 

Information Theory (IT).  

 Much interesting work has been devoted to the physical applications of FIM in recent times (see, for instance, 

[9]and references therein Also,a generalization of the Yang-Mills Hitchin proposal was made suggesting an 

indentification of the Lagrangian density with the Fisher probability distribution (P(θ)).  

 However, this idea was explored from a variational point of view, in previous work by Plastino et al. 

[9,10,11]and in several geometrical ways by Brody and Hughston. 

 This proposal brought a contribution to the line of works looking for a connexion between the spacetime 

geometry and quantum field theories. 

 In the last decades it has been claimed that the above expectation is partially realized in the AdS/CFT (anti-

de Sitter/Conformal Field Theory) correspondence which asserts that the equivalence of a gravitational 

theory (i.e., the geometry of spacetime) and a conformal quantum field theory at the boundary of spacetime 

certainly exists. 

[7] R. Fisher, Math. Proc. Cambridge Philos. Soc. 22 (1925) 700. 

[8] C.R. Rao, Bull. Calcutta Math. Soc. 37 (1945) 81. 

[9] B. Roy Frieden, Science from Fisher Information: A Unification, Cambridge Univ. 

Press, ISBN 0-521-00911-1, 2004. 

[10] L.P. Chimento, F. Pennini, A. Plastino, Phys. Lett. A 293 (2002) 133. 

[11] B. Roy Frieden, A. Plastino, Phys. Lett. A 272 (2000) 326. 



FISHER'S METRIC AND HITCHIN'S 

PRESCRIPTION 

 The Fisher information metric is a Riemannian 

metric for the manifold of the parameters of 

probability distributions.  

 The Rao distance (geodesic distance in the 

parameter manifold) provides a measure of the 

difference between distinct distributions.  

In the thermodynamic context, the Fisher information metric is directly related to the 

rate of change in the corresponding order parameters and can be used as an 

information-geometric complexity measure for classifying phase transitions, e.g., the 

scalar curvature of the thermodynamic metric tensor diverges at (and only at) a phase 

transition point (this issue will be analyzed in future work). In particular, such relations 

identify second-order phase transitions via divergences of individual matrix elements 



FISHER'S METRIC AND HITCHIN'S 

PRESCRIPTION 

Gab   dDx Px;a lnPx;b lnPx;

where xμ(μ,ν=0,…,D) are the random variables and θa (a,b=1,…,N) are 

the parameters of the probability distribution. Besides this, P(x;θ) 

must fulfill the normalization condition 

 dDxPx;  1

The Fisher-Rao information metric is given by 



Px; : Lx;|solution .

Hitchin proposed the use of the the squared field strength of Yang-

Mills theory as a probability distribution.  

 

A generalization of the Hitchin's proposal consist in identifying the 

probability distribution with the on-shell Lagrangian density of a 

field theory 

FISHER'S METRIC AND HITCHIN'S 

PRESCRIPTION 



FISHER'S METRIC AND HITCHIN'S 

PRESCRIPTION 

 Hitchin proposed an alternative definition of 

the moduli space geometry. For the set of 

instantons with a fixed instanton number Q, the 
Lagrangian density LYM may be considered as a 

probability distribution functions: ∫R4 LYM =Q 

Q. Hitchin then proposes to utilize so-called 

Fisher-Rao’s information metric to describe the 

geometry of the instanton moduli space M. 



 First, we will follow the `generalized Hitchin 
prescription', identifying our Lagrangian (calculated at 
the solution) with the probability distribution.  

 Second, we will introduce a new proposal: we will take 
the state probability current of the emergent metric 
solution of the superspace as being itself the probability 
distribution.  

 The results of the two approaches will be compared in 
order to infer the physical meaning of the a and a∗ 
parameters appearing in the pure fermionic part of the 
superspace metric. 

FISHER'S METRIC AND HITCHIN'S 

PRESCRIPTION 



EMERGENT METRIC SOLUTION 

zA  x,, 


L  m AA  m







 a    a    .



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x  i

.

     

The model describes a free particle in a superspace with 

coordinates 

The corresponding Lagrangian density is 

ds2  żAżA  x x   2ix      a        a     

In coordinates 



gab0  0|
a

a

ab

|0,

g0   , g0  i   , g 0  i ,

g0  a       , g 0  a   .

  #   

where the initial values of the metric components are given by  

or, explicitly, 

The `squared' solution with three compactified dimensions (λ 

spin fixed) is 

gABt  eAttgAB0,

EMERGENT METRIC SOLUTION 



EMERGENT METRIC SOLUTION 

At   m
|a|

2

t2  c1 t  c2 ,

and

t  t    t

 

 cost/2  2

 Z    


  sint/2  2
 Z 

 

 cost/2   



  sint/2  4|a|ReZ,

  #   

  #   

The bosonic and spinorial parts of the exponent in the superfield 

solution are, respectively,  

where φα, Zα, are constant spinors, ω≈1/|a| and the constant c₁, 
due to physical reasons and the chirality restoration of the 

superfield solution should be taken purely imaginary 



IMPORTANT PROPIERTIES OF THE SUPERFIELD 

SOLUTIONS RELATED WITH THE PARAMETERS 

 Gaussian solutions 

 consistent mechanisms of localization and 

confinement. 

 an alternative to the Randall-Sundrum (RS) 

model without extra bosonic coordinates. 

 Chirality restoration in the system. 

 



FISHER INFORMATION METRIC FROM 

RIEMANNIAN SUPERSPACES 

 Fisher method considers a family of probability distributions, 
characterized by certain number of parameters. The metric 
components are then defined by considering derivatives in 
different `directions' in the parameters space.  

 That is, measuring `how distant' two distinct set of 
parameters put apart the corresponding probability 
distributions.     

 In the following we will calculate the Fisher information metric 
corresponding to a generalized Hitchin `on-shell' Lagrangian 
prescription. In our case, the parameters of interest in the 
metric solution are a and a∗, which could indicate the 
residual effects of supersymmetry given that they survive 
even when `turning off' all the fermionic fields. 



GENERALIZED HITCHIN PRESCRIPTION FOR THE 

PROBABILITY DISTRIBUTION 

 Following the generalized Hitchin prescription we 

identify the probability ditribution with Lagrangian 

evaluated at solution gABt  eAttgAB0.

PzA,a,a : L|gABt  e
1

2
AttL0 ,

L0  Lgab0  m




  a    a    .

the probability distribution density takes the form 

where 



GENERALIZED HITCHIN PRESCRIPTION FOR THE 

PROBABILITY DISTRIBUTION 

 After calculate the a and a∗ derivatives of our probability 

distribution, we can now write down the Fisher's metric 

components 

Gaa   dx 4P1 P
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P
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L0
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1

2
Att

  #   

t; |a| 
At  t

|a|

 2m2

|a|3
t2  2 t

2



 sint/2   



  cost/2  4ReZ,

  #   where 



STATE PROBABILITY CURRENT AS DISTRIBUTION 

 identifying the state probability density (zero component of the 

probability current) of the solution as the probability density itself.  

    The zero component of the probability current can be obtained 

by making 

j0t  2E2gabtgabt.

j0t  1

16
K0e

2 m

|a|

2
t22c22t

,

K₀≡32E²|α|²,  



STATE PROBABILITY CURRENT AS DISTRIBUTION 

 taking P≡j₀(t) 

Gaa   dx 4P1 P
a

2

 a

|a|

2

I

Gaa   dx 4P1 P
a

2

 a
|a|

2

I

Gaa  Gaa   dx 4P1 P
a

P
a  I,

  #   

  #   

  #   

where I corresponds to the integral of the temporal part

I  1
16
K0  dt t; |a|2e

2 m

|a|

2
t22c22t

.   #   



THE B₀ PART OF THE FISHER SUPERMETRIC: 

GENERALIZED HITCHIN PRESCRIPTION WITH ZERO FERMIONS 

t; |a||0  2m 2

|a|3
t2 and L0 |0  m x x   m,

Gab  Im,c1 ,c2 , |a|
ei2 1

1 ei2
,

Im,c1 ,c2 , |a|  1
4

m5

|a|6
 dt t4 e

 m

|a|

2
t2c1tc2




64

c1

m
4
|a|3  12

c1

m
2
|a|12|a|1 e

1

4

c1
m

2
|a|2c2

  #   

When putting all fermion to zero, the derivative of the time dependent exponential and the 

L₀ initial value `on-shell' Lagrangian reduce, respectively, to 

In that case, and writing the complex parameters as a=|a|exp(iφ), the metric 

components take the simple form 

where indices a,b take values in {a,a∗}, and the prefactor is the integral of the time varying 

factor, that can be easily performed to obtain 



THE B₀ PART OF THE FISHER SUPERMETRIC: 

STATE PROBABILITY CURRENT WITH ZERO FERMIONS 

 although the fermions are turning out, the gaussian (localized)behaviour of the 

solution remains due the complex fermionic coefficients a. This is very important for 

the phenomenological point of view because the localized behavior of the solution 

remains also after the susy breaking 

Gab  Jm,E, ||,c2 , |a|
ei2 1

1 ei2

Jm,E, ||,c2 , |a|  1
4

K0m4

|a|6
 dt t4 e

2 m

|a|

2
t22c2


3 2

4

E2 ||2

m e2c2 |a|1 ,

  #   now the prefactor is 

obtained performing 

the integral 

j0 |0  1

16
K0e

2 m2

|a|2
t22c2

,



THE B₀ PART OF THE FISHER SUPERMETRIC: 

COMPARISON 

 Note that this last expression presents only the |a|⁻¹ singular term. This is 

precisely due to the lack of the `free wave' (linear in t) term in the 

exponential factor, which leads to a complete departure of the Gaussian 

behaviour shown by remaining in common just the singular term 

Jm,E, ||,c2 , |a|  1
4

K0m4

|a|6
 dt t4 e

2 m

|a|

2
t22c2


3 2

4

E2 ||2

m e2c2 |a|1 ,

  #   
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2
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

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c1

m
4
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m
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|a|2c2

  #   



INFORMATION METRIC AND GEOMETRICAL 

LAGRANGIANS 

Gab   dDx Px;a lnPx;b lnPx;

 4  dDx aP1/2x;bP1/2x;.   #   

P1/2  Lg  P  ds2

The appearance of the square root of the probability density P above, naturally leads to the 

identification 

Note that the Fisher metric can be rewritten in the 

form 

the P function is related to the line element that define the geometrical (superspace in our 

case) Lagrangian of the theory.  

Therefore, this is a first approach to connect the two "distances": the Rao distance in the 

probability parameters manifold, and the geometric space-time distance 



P AS THE CURRENT OF PROBABILITY: THE QUANTUM 

CORRESPONDENCE 

Consider a Hilbert spaceH with a symmetric inner product G ij. For instance, we can have in mind the caseH  L2R, where

R  R2m (e.g.: the phase space of a classical dynamical system, the configuration space spin systems, etc.)

Gab   dDx Px;a lnPx;b lnPx;

 4  dDx aP1/2x;bP1/2x;.   #   

puts in evidence the clear possibility of mapping the probability density function Px; onR toH by forming the square-root.

j0  1

16
K0e

2 m

|a|

2
t22c22t  Px;,

Gab  4  dDx a P1/2x;b P1/2x;

 4  dDx agABx;a,ab gABx;a,a

 4  dDx a gABx;a,ab gCDx;a,aABCD.

  #   

The metric components take then the form 

As we propose 



P AS THE CURRENT OF PROBABILITY: THE QUANTUM 

CORRESPONDENCE 

Gab  a gABx;a,ab gCDx;a,a 

 a gABx;a,agCDx;a,a gABx;a,abgCDx;a,a,

  #   

ReGab  a LAB

1/2x;a,ab LCD

1/2x;a,a
HS

,

since its real part can be exactly  rewritten as 

We can also introduce the following Hermitian metric tensor 

Gab  4a gABx;a,ab gCDx;a,aABCD

 a gABx;a,ab gCDx;a,a.

  #   

the quantum `crossover' is 



P AS THE CURRENT OF PROBABILITY: THE QUANTUM 

CORRESPONDENCE 

LAB   d2
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the corresponding Gram-Schmidt operator reads 

with m,n  1/4,3/4m  n, and  , 
GS

standing for the customary inner product in the Banach space of the Gram-Schmidt

operators inH. The complex numbers  and  in the exponential factor are the eigenvalues of the coherent states.

where LAB (non-diagonal representation) is given by

In summary, our results come to realize the conexion conjectured by Caianiello. 



CONCLUDING REMARKS 

 In this work we have analyzed several aspects of the geometrical meaning of the 

Fisher's metric definition. A new generalization of the Hitchin prescription for 

constructing the Fisher's information metric was presented, taking a geometrical 

Lagrangian as probability distribution (P ↔L). The results were confronted with a 

completely different prescription: to take as probability distribution the state 

probability density of an emergent metric (coherent) state, which is a solution for a 

non-degenerated superspace obtained in a previous work (P ↔j₀). We then analyze 

the bosonic (B₀) part of the Fisher supermetric by putting all fermionic fields to zero, 

in order to compare our solutions with those in the literature.    The main results of 

this research can be summarized as follows:  



CONCLUDING REMARKS I 

i) The choice of the complex constants a and a∗ as our set of (physically meaningful) 

parameters is based on that they are responsible for the localized Gaussian behaviour of 

the physical states. This lead to a Fisher's metric on a complex 2-dimensional manifold 

presenting notably different behaviours in the two approaches. In the first one (P ↔L) the 

Gaussian behaviour of the metric state solution gab was preserved while in the second 

one (P ↔j₀) it was completely lost. However, it is important to remark that, in both cases, 

the ultralocal characteristic behavior of gab preserved through a singular (|a|⁻¹) term.  

    

ii) In principle, it should be possible to relate, from the quantum point of view, the a- a^{∗} 

complex manifold (Fisher's) metric with an invariant metric on a Kähler or on a projective 

Hilbert space (CP¹).   

  

 iii) the function P, in sharp contrast with the Hitchin's proposal, an be put in direct relation 

with the spacetime line element ds² by making the identification P^{1/2}≡L_{g} in the 

same Fisher's formula.    

 

 iv) we demonstrate that, using the probability current j₀ as the probability density P, the 

quantum counterpart of the Fisher's metric can be exactly implemented, and all the 

quantum operators involved in the geometrical correspondence, exactly constructed, as 

already inferred on a general basis by Caianiello et al.  
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 Gravity           quantum theory (new concepts:strings, LQG)  

 S.T quantum structure        discretization 

 Fundamental scale (minimal length)          naturally metric    

 Now            LENGTH AREA (strings, LQG)          
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Quantum Gravity Unification             1) MACROSCOPICAL REG.(thermal or not) 

 

                                                             2) CONSISTENT FORMULATION (length) 
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Superspace and discrete spacetime structure 
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Poissonian distribution for the coherent states 

obeying 

it differs with the individual distributions coming from each one of the two irreducible 

representations of the metaplectic group Mp(2) (spanning even and odd n respectively): 
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this expression is the core of our discussion: it shows explicitly the discrete structure of 

the spacetime as the fundamental basis for a consistent quantum field theory of gravity. 

By the other hand, when we reach the limit n→∞ the metric solution goes to the 

continuum due: 
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and similarly for the lower part (spinor down) of above equation 

Consequently, when the number of levels increase the metric solution goes to the 

continuum "manifold" general relativistic behaviour: 
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CONCLUDING REMARKS II 

  1) Emergent nature of the spacetime.     

 2) Independence of the discretization method.    

  3) Consistent suitable transition to the macroscopic 
(classical, semiclassical, etc.) regime.     

 4) Total and absolute independence of particular 
solutions or other arguments involving particular 
geometries (e.g. black-hole/area and the entropy ) .     

 5) Solutions, arguments involving particular geometries, 
etc. of the previous point, must be reached by the 
quantum gravity theory but not depending them at the 
fundamental level. 


