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Symmetry is a wide-reaching concept 
that has been used in variety ways in 
physics. Originally it was used mainly 
to describe the arrangement of atoms 
in molecules and crystals (geometric 
symmetries.)

Over the course of 20th century and 
beyond, it has been considerably 
extended and covers some of the most 
fundamental ideas in physics.
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Nature seems to favor some particularly unique and 
beautiful structures for the description of its inner secrets. 
They often appear in disguised broken-down form, so it is 
up to us to divine their existence from incomplete 
evidence: awareness of these structures is an important 
research tool.

There are four infinite families of simple Lie algebras:

They describe spacetime rotation, quark and lepton 
charges and their associated Yang-Mills gauge structures.

Today, SU(N) gauge theories with N large are intensely 
studied.
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With the advent of QM, Lie algebras and the groups they 
generate have found widespread uses in the description 
of physical systems. The quantum mechanical state of a 
particle is determined by labels. Some are continuous, 
such as particle’s momentum (or position). Others are 
discrete, such as its spin and charges. All stem from 
irreducible unitary representations of Lie algebras. The 
continuous ones pertain to irreps of non-compact groups, 
and the discrete ones to compact groups. Mass and spin 
label the representations of the non-compact group of 
special relativity the Poincare group, and the color of a 
quark roam inside a representation of the compact color 
group SU(3). Moreover, their interactions are determined 
by dynamical structures based on these invariance 
groups.
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leading to SO(3) symmetry, and Lorentz invariance in relativistic
quantum mechanics

which leads to SO(3,1) symmetry.

1. Kinematic (space-time) symmetries.Examples are rotational
 invariance in non-relativistic quantum mechanics
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2. Dynamic (internal) supersymmetries.

Here we see development of two ideas:

a. there may exist in nature other 
symmetries in addition to space-time.

b. There may be symmetries of dynamical 
origin, related to special properties of the 
Hamiltonian (or Lagrangean) operator, 
rather than its space-time behavior.
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Supersymmetry:

In normal symmetry, symmetry operations 
transform separately fermions into fermions, bosons 
into bosons.

In supersymmetry, some of the symmetry 
operations transform bosons into fermions and vice 
versa. Introduction of SUSY led to other major 
developments in physics. SUSY is used in variety of 
ways. Particularly important are:

1. Kinematic (space-time) supersymmetries:
For example Wess-Zumino invariance. No 
experimental evidence for it yet.

2 Dynamic (internal) supersymmetries.
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A Brief History of Dynamic SUSY in Physics
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The observed hadronic SU (6 /21)supersymmetry is not exact. The breaking of
this supersymmetry has twoorigins. First one is the qand Dmass differences
as well as massdifferences among quarks.This leads todifferent interceptsfor
parallel Regge trajectories.The second breakingcomesfrom the
contribution to the potential from onegluon exchange.

This potential is a 4−vector and isspin dependent.Since thequark and antiquark
have spin S=1 /2and thediquark hasS=0or S=1, the spin dependent part of the
q−D potential is different from that of q−q̄ , causingsupersymmetry breaking.

Another effect is the deviation of the Regge trajectories from
linearity for low angular momenta , since the potential is no longer
proportional to the distance ,and quark masses can nolonger be neglected.
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To see thesymmetry breaking effect , we consider a hadron that approximates
a two−body system. Thequark ,antiquark ,and diquark will acquire their effective
masses under the influence of theeffective potentials.There are alsospin−dependent
interactions among thequarks. Based on a semi−relativistic Hamiltonian for a
quark−diquark system interacting with thesame potentials S̃ (r)and the Ṽ (r) the
massof a hadron will take theapproximate form

m12=m1+m2+K
S (1)⋅S (2)

m1m2

,

wheremi and S( i )(i=1,2)are respectively theconstituent mass and thespin of a quark
or a diquark. Thespin−dependent Breit term will split the masses of hadrons of
different spin values.
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If weassume

mq=mq̄=m

wherem is theconstituent massof uor d quarks ,and denote the massof diquark as
mD , then this approximation gives

mπ=(mq q̄)S=0=2m−K 3

4m2 ,

mρ=(mq q̄)S=1=2m+K 1

4m2 ,

mΔ=(mqD)S=3/2=m+mD+K
1

2mmD
,

mN=(mqD)S=1 /2=m+mD−K
1
mmD

.

Eliminatingm ,mDand K , weobtain a mass relation

8
3
⋅

2mΔ+mN
3mρ+mπ

=1+3
2
⋅
mρ−mπ

mΔ−mN

,

which agrees with experiment to13%.
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The supersymmetry based on thesupergroupU (6/21)acts on a quark and
antidiquark situated at thesame point x1 .At the point x2 we can consider the
action of a supergroup with thesame parameters ,or one with different
parameters. In the first case we have a globalsymmetry. In thesecond case ,
if weonly deal with bilocal fields , the symmetry will be represented by
U (6 /21)×U (6/21),doubling the Miyazawa supergroup.

On the other hand , if any number of pointsare considered , with different
parameters attached toeach point , weare led to introduce a local
supersymmetryU (6 /21) to which weshould add the local color group
SU (3)c .Since it is not a fundamental symmetry , weshall not deal with
the local Miyazawa group here. However , thedouble Miyazawa
supergroup is useful for bilocal fields since thedecomposition of the
adjoint representation of the728−dimensional Miyazawa group with
respect toSU (6)×SU (21)gives

728=(35,1)+(1,440)+(6,21)+(6̄, 2̄1)+(1,1)
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A further decomposition of thedouble Miyazawa supergroup into its field
with respect to its c.o.m.coordinates leads to thedecomposition of the
126−dimensionalcosets(6,21)and (21,6) into56++70-of thediagonal SU (6).

We would have a much tighter and moreelegant scheme if we could perform
such a decomposition from thestart and be able to identify the(1,21)part
of the fundamental representation of U (6 /21)with the 21−dimensional
representation of the SU (6)subgroup, which means going beyond the
Miyazawa supersymmetry toasmaller supergroup having SU (6)asa subgroup.
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-Conway-Slone lattice associated with discrete Jordan algebras 
over octonions

-Association between superstring symmetries and lattices generated 
by discrete Jordan algebras

-Suggest all known superstring theories are related and 
originated from a more general theory  related to 
Conway-Slone transhyperbolic group  
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