Exceptional Structures
and
Relativistic Quark Model

Sultan Catto

CUNY Graduate School and
The Rockefeller University, New York

-MOSCOW 2014-



Acknowledgments

Some of the work presented here had been
done in collaboration with:

* Yasemin Gurcan (CUNY)
* Amish Khalfan (CUNY)
* Levent Kurt (CUNY)



Symmetry is a wide-reaching concept
that has been used in variety ways In
physics. Originally it was used mainly
to describe the arrangement of atoms
in molecules and crystals (geometric
symmetries.)

Over the course of 20th century and
beyond, it has been considerably
extended and covers some of the most
fundamental ideas in physics.



Nature seems to favor some particularly unique and
beautiful structures for the description of its inner secrets.
They often appear in disguised broken-down form, so it is
up to us to divine their existence from incomplete
evidence: awareness of these structures is an important
research tool.

There are four infinite families of simple Lie algebras:

Ap, ~SU(n+1)
B, ~S50(2n+1)
Crn ~ Sp(2n)

D,, ~ S50(2n)

They describe spacetime rotation, quark and lepton
charges and their associated Yang-Mills gauge structures.

Today, SU(N) gauge theories with N large are intensely
studied. 4



With the advent of QM, Lie algebras and the groups they
generate have found widespread uses in the description
of physical systems. The quantum mechanical state of a
particle is determined by labels. Some are continuous,
such as particle’'s momentum (or position). Others are
discrete, such as its spin and charges. All stem from
irreducible unitary representations of Lie algebras. The
continuous ones pertain to irreps of non-compact groups,
and the discrete ones to compact groups. Mass and spin
label the representations of the non-compact group of
special relativity the Poincare group, and the color of a
quark roam inside a representation of the compact color
group SU(3). Moreover, their interactions are determined
by dynamical structures based on these invariance
groups.
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1. Kinematic (space-time) symmetries.Examples are rotational
Invariance in non-relativistic quantum mechanics

H=7-4+V(r)

. ., 0
H(F) = ih=(7)
leading to SO(3) symmetry, and Lorentz invariance in relativistic
guantum mechanics

7, (10, — eA,) + m](7F,t) = 0

which leads to SO(3,1) symmetry.



2. Dynamic (internal) supersymmetries.
Here we see development of two ideas:

a. there may exist in nature other
symmetries in addition to space-time.

b. There may be symmetries of dynamical
origin, related to special properties of the
Hamiltonian (or Lagrangean) operator,
rather than its space-time behavior.



Atomic Physics

'

Pauli (1926) SO(4)

'

Heisenberg (1932) SUr(2)

v

Wigner (1937) SUrs(4) D SUr(2) ® SUg(2)

/\

Particle Physics Nuclear thrsics
l Elliot (1958) SU(3)
Gell-Mann and Ne’eman (1962) SU(3)

Giirsey and Radicati (1964) SUsr(6) D SU(3) ® SU2)

\J
Arima and Tachello (1974) SU(6)



Supersymmetry:

In normal symmetry, symmetry operations
transform separately fermions into fermions, bosons
into bosons.

In supersymmetry, some of the symmetry
operations transform bosons into fermions and vice
versa. Introduction of SUSY led to other major
developments in physics. SUSY is used in variety of
ways. Particularly important are:

1. Kinematic (space-time) supersymmetries:
For example Wess-Zumino invariance. No
experimental evidence for it yet.

2 Dynamic (internal) supersymmetries.



A Brief History of Dynamic SUSY in Physics

Miyazawa (1966) SU(6/21)

Particle Physics Nuclear Physics

'

Balantekin, Bars & Tachello (1978) SU(6/12)

\/
Catto & Gilirsey (1984) SU(6/21)
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Is color related to octonions?

Is the quark structure a consequence of octonionic quantum mechanics?
Some consequences:

Since (G5 is the automorphism group of octonions

Go = Aut(Q2)

and it can be imbedded into SO(7)

SO(7) D G2 D SU(3)

is SO(7) a higher symmetry of strong interactions?
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antiquark
(spin 72
color 3 )
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Diquark
(spin 0 or 1
color 3 )
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antiquark
(spin Y2

color 3 ) ‘ \

Diquark
(spin 0 or 1
color 3 )
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Octonions: 1,e4 A=1,....7 eaep = —0aB + €aBcec
eapc = 1forABC' = 123,516,624,435,471,673,572
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()
/N
()
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€1 €2 = €3
€2 €1 =

le1,e2] =

z,y, 2] = (2y)z — 2(y2)

Glrsey diagram
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€1 €2 = €3
€2 €1 =

le1,e2] =

[, y, 2] = (2y)z — 2(y2)
leq, eq,e5] = (eqeg)es — eqeges) = 2er
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Completion of Gursey diagram
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/N
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2y, 2] =y, 2z,2] = |2, 2, 9]

[CB,y,Z] — —[y,a:,z] — —[QZ,Z,y] — —[z,y,x]

Define a 4-index object ¢, related to the associator as
€a; €3, eu] = 29aguvey

Yopuw = 1 for combinations 1346, 2635, 4567, 3751, 6172, 5214, 7423
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Duality property between €5, and ¥ng,, In R’
is best seen in the following construction:

‘
Oy W = o — Ot

Tt O W o H~ — =

N T = Wi

— =3 O WO Y =~ DN

DO = =J OO Ot W =~

= DN — O ~J O W

A = N~ = Ot O

— €Xop

= wo‘:ﬁ/,w
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SPLIT OCTONION ALGEBRA

One can form a split Cayley algebra over the field of complex numbers with
basis:

1 , . 1 .
= 5(61 + iey) uy = 5(61 — 1€y4)
1 , . 1 .
Ug = 5(62 + ies) Uy = 5(62 —ies)
1 , . 1 .
U3 = 5(63 + ieg) Ug = 5(63 — 1€g)
1 , ., 1 ,
Uy = 5(1 + ie7) Uy = 5(1 — jer)
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The automorphism group of the octonion algebra is the 14-parameter excep-
tional group (G». The imaginary octonion units e,,a = 1,2,...,7 fall into its
7-dim representation.

Under the SU(3)¢ subgroup of the G that leaves e; invariant, up and uj
transform like singlets while u; and u; transform like a triplet and an antitriplet
respectively. The multiplication table can now be written in a manifestly SU(3)¢
invariant manner:

us = U uoty = 0
. — . * —_— . * , — . _—
Upl; = UjUy = Uy Ugl; = ujug = 0
*
’UJZ'”U,j — —uju,,; — eijkuk
X
’U,f,;’UJj = —(57;]'11,0
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To compactify our notation we write:

1 , . 1 .
Uy = 5(1 + ie7) Uy = 5(1 — jer)

1 1

ES

Uj = 5(63' +i€j43) U; = 5(63' —i€j13) 7=1,2,3
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MultiplicationT able :

E S E S
Uo | Uy UL (s
Uo Uo 0 U 0
* * *
ug | 0 | ug 0 Uy,
* .
U4 0 U4 €ikilU; —O04kUO
* * *
us | u; O | —0jkuU, | €jkily

Note: u; and u; behave like fermionic creation and annihilation operators:

{u’ivuj} — {u;kau;(} =0 {uzvu;} — _5’ij

Showing the three split units to be Grassmann numbers.
Being non-associative they give rise to an exceptional Grassmann algebra.
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DYNAMICAL SUPERSYMMETRY

Under the color group SU(3)¢
49 3®3=168

99: 33=3D6

Under the spin-flavor group SU,¢(6)

9q9: 6R6=1¢35
qgqq: 66 =15 21
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DYNAMICAL SUPERSYMMETRY

Under the color group SU(3)¢
9 3x3=168 uju,’::—5jkuo

9: 3R3=3%6 ujuk:ejkiuf’;

Under the spin-flavor group SU,¢(6)

9q9: 6R6=1¢35
gq: 66 =15 21
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If one re-writes qqq baryon as qD, where D is a diquark,
the quantum numbers of D are:

for color, 3, since when combined with ¢ must give a

color singlet;

for spin-flavor, 21, since when combined with color must give
antisymmetric wavefunctions.

But the quantum numbers of ¢ are:

for color, 3,
and for spin-flavor, 6.

Thus g and D have the same color quantum numbers
(color forces can not distinguish between ¢ and D).
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» Dimensions of Internal Degrees of Freedom of Quarks &
Diquarks

SUf(3) SUS(Z) dim
q O s=1/2 | 3x2=6
== s = 6 x 3 =18
D
< O s =20 IX1=3
| L]




Thus there is an approximate dynamic supersymmetry
in hadrons with supersymmetric partners

All hadrons can be obtained by combining 1) and -
mesons are ¢q, baryons are gD, )
antibaryons are g, and exotic mesons are DD.

Corresponding supersymmetry is SU(6/21).
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The confining energy associated with the Bohr radius for
the bound state is obtained from the linear confining
potential S(r) = br, so that the effective masses of the
constituents become:

1 1
My =m1+§So Moy =m2+550 (So = bro)

For a meson mi and msy are the current quark masses while
My and M5 can be interpreted as the constituent quark masses.
Note that even in the case of vanishing quark masses

associated with a perfect chiral symmetry, confinement results

in non-zero constituent masses that spontaneously break the
SU(2) x SU(2) symmetry of u, d quarks.
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Simplified spin free Hamiltonian involving
only the scalar potential:

H? = 4](m + 1bfr)2 + P? + dCs 1)]
2 r2
9?2 290
p2=—___ =
" or2 r Or

Potential model gives :

9
g

2 2\ __ 2 2
p_mw)_mA_mN

with an accuracy of 1% of the experiment.
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a!l(2y — Dy + |o| - D7
2707 (y = 5)H(y — !

|| 27+%(7 +p— %)' |a\!(%)! 2
_m{ Z b7+%p! ((\Oé\ —p)l(p — || + %)1)

p=0

e+ 1y — DICRE+ E + 20+ 1)
—I—Z 22n (n))?2(n. —n—l).(€+n—l—2).

Xnil )ktleltiontrts (e —n— D)+ k47— H(n+k+ 1) -3
b7 +s (k+ Dl(ng —k — DI+ k+ 1) (n+k — |a| + 3)!
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1

1
Eg = 4b(l + 2n¢ + 5)
Ng 2 Ny
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The observed hadronic SU (6/21)supersymmetry is not exact. The breaking of
this supersymmetry has two origins. First one is the g and D mass differences

as well as mass differences among quarks. This leads to different intercepts for
parallel Regge trajectories. The second breaking comes from the

contribution to the potential from one gluon exchange.

This potential is a 4 — vector and 1sspin dependent. Since the quark and antiquark
have spin S =1/2 and the diquark has § =0 or § =1, the spin dependent part of the
g — D potential is different from that of ¢ —g, causing supersymmetry breaking.

Another effect is the deviation of the Regge trajectories from
linearity for low angular momenta , since the potential 1s no longer
proportional to the distance , and quark masses can no longer be neglected.
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To see the symmetry breaking effect, we consider a hadron that approximates

a two— body system. The quark , antiquark , and diquark will acquire their effective
masses under the influence of the effective potentials. There are also spin —dependent
interactions among the quarks. Based on a semi— relativistic Hamiltonian fora

quark —diquark system interacting with the same potentials S () and the 7 () the
mass of a hadron will take the approximate form

(1) o(2)
m12=m1—|—m2-|—KS ) ,
m,m,

where m.and st (i=1,2)are respectively the constituent mass and the spin of a quark

or adiquark. The spin —dependent Breit term will split the masses of hadrons of
different spin values.
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If weassume
m,=m,=m

where m 1s the constituent mass of u or d quarks, and denote the mass of diquark as
m ,, then this approximation gives

3
mn:<mqq)5:0:2m_K 27
4m
1
mp:<ch_]>S:1:2m+K 27
4m
B B 1
mA_(mqD)S:3/2_m+mD+K > ,
mm,
B B 1
mN_(mqD)S=1/2_m+mD_K :
mm ,
Eliminating m , m ,and K , we obtain a mass relation
8 2mytmy 3 m,—m,
3 3m,+m, 2 my—my

which agrees with experiment to 13 %. 44



The supersymmetry based on the supergroup U (6/21 )acts on a quark and
antidiquark situated at the same point x, . At the point x, we can consider the

action of a supergroup with the same parameters, or one with different
parameters. In the first case we have a global symmetry. In the second case,
if we only deal with bilocal fields, the symmetry will be represented by
U(6/21)xU(6/21),doubling the Miyazawa supergroup.

On the other hand , 1f any number of pointsare considered , with different
parameters attached to each point , we are led to introduce a local
supersymmetry U (6/21 ) to which we should add the local color group

SU (3)°.Since it is not a fundamental symmetry , we shall not deal with
the local Miyazawa group here. However , the double Miyazawa
supergroup 1s useful for bilocal fields since the decomposition of the

adjoint representation of the 728 —dimensional Miyazawa group with
respect to SU (6)x SU (21 ) gives

728=(35,1)+(1,440)+(6,21)+(6,21)+(1,1)

45



A further decomposition of the double Miyazawa supergroup into its field
with respect toits c.0.m. coordinates leads to the decomposition of the

126 —dimensional cosets (6,21 )and (21,6 )into 56 +70 of the diagonal SU (6).

We would have a much tighter and more elegant scheme if we could perform
such a decomposition from the start and be able to identify the(1,21) part

of the fundamental representation of U (6/21 ) with the 21 —dimensional
representation of the SU (6)subgroup, which means going beyond the
Miyazawa supersymmetry toasmaller supergroup having SU (6)as a subgroup.
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RESULTS

* Parallelism of Regge Trajectories
* Mass formulas m — p, N — A trajectories

* Existence of exotic mesons as DD states: ag(980), fo(980)
* Multiquark states by ¢ — D, ¢ — D transform
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Desargues’ Theorem
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Pappus’ Theorem
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/N
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Exceptional Groups : G2, F4, Eg, E7, Eg

Construction of the root lattices of Eg, Eg = Eg, or Eqg

-Conway-Slone lattice associated with discrete Jordan algebras
over octonions

-Association between superstring symmetries and lattices generated
by discrete Jordan algebras

-Suggest all known superstring theories are related and

originated from a more general theory related to
Conway-Slone transhyperbolic group
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