Часть 2.

- Энтропия. Закон возрастания энтропии.
- Квазистатические процессы.
- Первое начало термодинамики. Температура.
- Адиабатический процесс. Давление. Энтальпия.
- Свободная энергия и термодинамический потенциал.
- Соотношения между производными термодинамических величин.
- Термодинамическая шкала температуры.
- Процесс Джоуля-Томсона.

Модельные системы в статистической механике

Большинство свойств макроскопических систем связано с огромным числом их динамических степеней свободы.

Их исследование значительно упрощается при рассмотрении сравнительно простых модельных систем, допускающих пренебрежение взаимодействием между частицами или же его учет в рамках теории возмущений. К таким моделям относятся:

- Система невзаимодействующих частиц в ящике с идеально отражающими стенками (идеальный газ)
- Система невзаимодействующих спинов во внешнем магнитном поле (идеальный парамагнетик)
- Система невзаимодействующих осцилляторов с заданной частотой (модель Эйнштейна колебаний твердого тела)

Энтропия

Рассмотрим величину $\eta = -\ln
ho(p,q;t)$

В силу статистической независимости подсистем

$$\rho_{12} = \rho_1 \rho_2; \quad \eta_{12} = -\ln \rho_{12} = -\ln \rho_1 - \ln \rho_2 = \eta_1 + \eta_2$$

Энтропия системы определяется как среднее значение п

$$S = <\eta> = -\int \frac{dpdq}{(2\pi\hbar)^{3N}N!} \rho(p,q;t) \ln \rho(p,g;t)$$
 (2.1)

В случае микроканонического распределения равновесной замкнутой системы в энергетическом слое $\delta E \in (E-\frac{\Delta E}{2}) \leq H(p,q) \leq (E+\frac{\Delta E}{2})$

$$ho(p,q)=\Omega^{-1}(E,N,V)$$
 где $\Omega(E,N,V)=rac{1}{N!(2\pi\hbar)^{3N}}\int\limits_{\delta E}dpdq$

Тогда энтропия равна логарифму статистического веса:

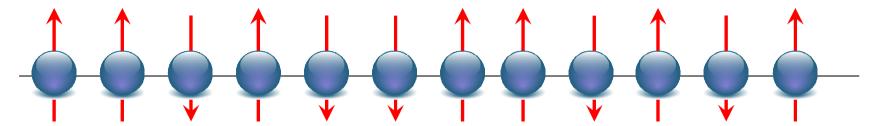
$$S = -\int \frac{dpdq}{(2\pi\hbar)^{3N}N!} \Omega^{-1} \ln \Omega^{-1} = \ln \Omega(E, N, V)$$
 (2.2)

Энтропия является функцией состояния то есть она зависит только от макроскопического состояния но не от того, каким образом система в него пришла.

Спиновая цепочка в магнитном поле

Модель парамагнетика: цепочка N состояний со спином ½ во

внешнем магнитном поле



Энергия состояния со спином вверх: *ε*/2 ; *N*↑ состояний

Энергия состояния со спином вниз: -ε/2; N- N₁ состояний

Полная энергия цепочки:
$$E=N_{\uparrow}rac{arepsilon}{2}-(N-N_{\uparrow})rac{arepsilon}{2}$$
 то есть $N_{\uparrow}=rac{E}{arepsilon}+rac{N}{2}$

Число состояний со спином вверх есть

$$C_N^{N_{\uparrow}} = \frac{N!}{(N_{\uparrow})!(N-N_{\uparrow})!} \qquad \Omega(E) = C_N^{\frac{E}{\varepsilon} + \frac{N}{2}}$$
 (2.3)

Энтропия спиновой цепочки:

$$S = \ln \Omega(E) = \ln C_N^{N_\uparrow}$$

Вероятность

Мы будем понимать под *событием* некоторый результат измерения. Событие является статистической величиной если его вероятность P в процессе измерения меньше 1. Если происходят два последовательных события, то имеется 2 возможности:

В процессе измерения наблюдается то или иное событиеСумма вероятностей

Правило сложения независимых событий: P(i или j) = P(i) + P(j)

(независимые события - вероятность одного события не влияет на вероятность другого)

• В процессе измерения наблюдается оба события - Умножение вероятностей

Правило умножения независимых событий: $P(i \bowtie j) = P(i) \cdot P(j)$

<u>Пример</u>: Какова вероятность того, что при 2 последовательных бросках игрового кубика одна и та же грань появится дважды?

Вероятность одной подобной комбинации есть, например (1,1): 1/6x1/6=1/36 (правило умножения) Следовательно, по правилу сложения 6 независимых событий, $P = P(1,1) + P(2,2) + ... + P(6,6) = 6 \cdot 1/36 = 1/6$

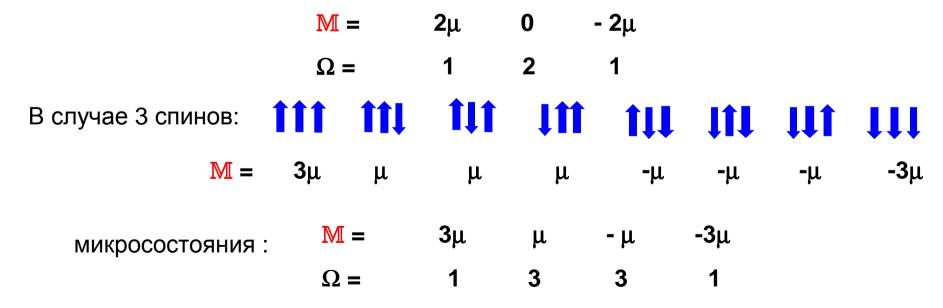
Ожидаемое значение макроскопической наблюдаемой A: (усредненное по всем возможным микросостояниям)

$$\langle A \rangle = \sum_{\{\sigma\}} P(\sigma_1, ..., \sigma_N) A(\sigma_1, ..., \sigma_N)$$

Примеры

Рассмотрим два спина. Имеется 4 возможных конфигурации микросостояний:

Если поле выключено, то все микросостояния имеют одну и ту же энергию (вырождение). Заметим что 2 микросостояния с \mathbf{M} =0 микросостояния имеют одну и ту же энергию даже если \mathbf{B} \neq 0: они принадлежат одному и тому же макроскопическому состоянию со множественностью Ω =2. Макроскопические состояния могут быть классифицированы по полному магнитному моменту \mathbf{M} и множественности (статистическому весу) Ω :



Множественность состояний спиновой цепочки

Всего имеется N спиновых состояний в цепочке, при этом число равновероятных состояний есть 2^N , а вероятность находиться в данном микросостоянии есть $1/2^N$.

В отсутствие внешнего поля энергия всех возможных макроскопических состояний равна нулю, каждое состояние полностью определено заданием чисел (N, N_{\uparrow}). Множественность этого состояния определяется числом способов выбрать N_{\uparrow} объектов из N:

$$\Omega(N,0) = 1 \quad \Omega(N,1) = N \quad \Omega(N,2) = \frac{N \times (N-1)}{2} \quad \Omega(N,3) = \frac{N \times (N-1) \times (N-2)}{3 \times 2}$$

$$\Omega(N,n) = \frac{N \cdot (N-1) \dots [N-(n-1)]}{n \dots 2 \cdot 1} = \frac{N!}{n!(N-n)!}$$

Множественность (статистический вес) макроскопического состояния спиновой цепочки (N, N \uparrow):

$$\Omega(N,N_{\uparrow})=rac{N!}{N_{\uparrow}N_{\downarrow}}=rac{N!}{N_{\uparrow}(N-N_{\uparrow})}$$

Формула Стирлинга для N! (N >> 1)

Множественность (статистический вес) макроскопического состояния зависит от *N*!, воспользуемся приближением Стирлинга для In(*N*!):

$$\ln N! = \ln 1 + \ln 2 + \ln 3 + \dots + \ln N \approx \int_{1}^{N} \ln(x) dx = [x \ln x - x]_{1}^{N} \approx N \ln N - N$$

$$\ln N! \approx N \ln N - N$$
 или $N! \approx \left(\frac{N}{e}\right)^N$

$$N! \approx \left(\frac{N}{e}\right)^N$$

Более точно: (Упражнение 1.1)

$$N! \approx N^N e^{-N} \sqrt{2\pi N} = \left(\frac{N}{e}\right)^N \sqrt{2\pi N}$$

что в пределе $\ln N << N$, справедливом для больших значений Nдействительно дает

$$\ln(N!) = N \ln(N) - N + \frac{1}{2} \ln N + \frac{1}{2} \ln 2\pi \approx N \ln(N) - N$$

Распределение вероятности состояний спиновой цепочки

$$P(N, N_{\uparrow}) = \left(\frac{1}{2}\right)^{N} \frac{N!}{N_{\uparrow}!(N - N_{\uparrow})!} \approx \left(\frac{1}{2}\right)^{N} \frac{N^{N}e^{-N}}{N_{\uparrow}^{N_{\uparrow}}e^{-N_{\uparrow}}(N - N_{\uparrow})(N - N_{\uparrow})}$$

$$= \frac{N^{N}}{2^{N}N_{\uparrow}^{N_{\uparrow}}(N - N_{\uparrow})^{(N - N_{\uparrow})}}$$

$$P(1, N_{\uparrow}) \qquad P(10^{23}, N_{\uparrow})$$

$$0.5 \qquad 0.15 \qquad 0.05$$

$$0.15 \qquad 0.05$$

$$0.05 \qquad 0.05$$

$$0.05 \qquad 0.05$$

С ростом числа состояний в цепочке распределение вероятности быстро приближается к $P(N,N_{\uparrow})=N/2$

Множественность (энтропия) и беспорядок

Заметим: Можно связать понятия *множественности* и *беспорядка* макроскопического состояния. Малые значения множественности соответствуют порядку в системе, большая множественность означает беспорядок. В результате случайного процесса гораздо более вероятно придти к конфигурации с большим значением Ω , чем к упорядоченной системе с малой множественностью Ω :

 $\uparrow\downarrow\downarrow\uparrow$

малые значения Ω

большие значения Ω

Энтропия спиновой цепочки в магнитном поле

Формула Стирлинга: $\ln n! = n \ln n - n + \frac{1}{2} \ln(2\pi n) + O(1/n)$ Энтропия спиновой цепочки:

$$S = \ln \Omega(E) \approx N \ln N - N_{\uparrow} \ln N_{\uparrow} - (N - N_{\uparrow}) \ln(N - N_{\uparrow})$$
$$= -N_{\uparrow} \ln \frac{N_{\uparrow}}{N} - (N - N_{\uparrow}) \ln \frac{N - N_{\uparrow}}{N} = N(-\omega_{\uparrow} \ln \omega_{\uparrow} - \omega_{\downarrow} \ln \omega_{\downarrow})$$

где $\omega_{\uparrow} = N_{\uparrow} / N$ и $\omega_{\downarrow} = (1 - N_{\uparrow} / N)$ - вероятности состояний со спином вверх и спином вниз.

Так как $E=N_\uparrow {\varepsilon\over 2}-(N-N_\uparrow) {\varepsilon\over 2}$ эти вероятности можно записать как $\omega_\uparrow={1\over 2}+{E\over E_0};~~\omega_\downarrow={1\over 2}-{E\over E_0}$ где $E_0=N\varepsilon$

$$S(E) = N\left[-\left(\frac{1}{2} + \frac{E}{E_0}\right)\ln\left(\frac{1}{2} + \frac{E}{E_0}\right) - \left(\frac{1}{2} - \frac{E}{E_0}\right)\ln\left(\frac{1}{2} - \frac{E}{E_0}\right)\right]$$
(2.4)

Энтропия пропорциональна размеру системы, *S ~N*, то есть энтропия является экстенсивным параметром

Модифицируем формулировку задачи и найдем вероятность магнетизации спиновой цепочки $\omega(n)$. полагая что имеется $\frac{1}{2}$ (N+n) состояний со спином вверх и $\frac{1}{2}$ (N-n) состояний со спином вниз.

Тогда в отсутствие внешнего магнитного поля среднее значение магнитного момента цепочки < M >= 0 однако нас интересует распределение вероятности $\omega(M)$, $M = n\mu$.

Для каждого отдельного состояния вероятность ориентации в выбранном направлении равна $\frac{1}{2}$ и по аналогии с (2.3) число независимых комбинаций приводящих к одному и тому же полному моменту \mathbf{M} есть

$$\omega(n) = \frac{N!}{\left[\frac{1}{2}(N+n)\right]!\left[\frac{1}{2}(N-n)\right]!}$$

Вероятность того, что спонтанная магнетизация цепочки будет равна $M = n\mu$ таким образом составляет

$$\omega(n\mu) = \left(\frac{1}{2}\right)^N \frac{N!}{\left[\frac{1}{2}(N+n)\right]! \left[\frac{1}{2}(N-n)\right]!}$$
(2.5)

Воспользовавшись формулой Стирлинга и разложением логарифма при $N \gg n$

$$\ln\left(1\pm\frac{n}{N}\right) \approx \pm\frac{n}{N} - \frac{n^2}{2N^2} + \dots$$

получим
$$\omega(n\mu) = \left(\frac{1}{2}\right)^N \frac{N!}{\left[\frac{1}{2}(N+n)\right]!\left[\frac{1}{2}(N-n)\right]!}$$

$$\ln\omega(n\mu) \approx -\frac{1}{2}\ln N + \ln 2 - \frac{1}{2}\ln(2\pi) - \frac{n^2}{2N} = -\frac{1}{2}\ln\left(\frac{\pi N}{2}\right) - \frac{n^2}{2N}$$

Таким образом, мы получили гауссово распределение вероятности

$$\omega(M) \approx \left(\frac{2}{N\pi}\right)^{1/2} e^{-\frac{n^2}{2N}} \tag{2.6}$$

Замечание: заполните пропущенные выкладки в выводе этой формулы самостоятельно!

Что все это означает? Необратимость!

В системе с большим числом частиц подавляющее большинство микросостояний соответствует наиболее вероятному макросостоянию. Следовательно:

- (а) Если система не находится в наиболее вероятном макросостоянии, то она неизбежно быстро к нему эволюционирует. Причина «направленности» и необратимости этого процесса чисто статистическая: в этом направлении конфигурационного пространства имеется намного больше микросостояний чем в любом другом. Это объясняет почему энергия «перетекает» от «горячего» к «холодному» а не наоборот.
- (b) В дальнейшем система остается в наиболее вероятном макросостоянии несмотря на небольшие флуктуации макроскопических параметров.

Если два макроскопических объекта находятся в тепловом контакте друг с другом, то абсолютно *стохастические* и *обратимые*, микроскопические процессы ведущие к хаотическому изменению микросостояний, на макроскопическом уровне необратимо приводят к установлению наиболее вероятного макросостояния объединенной системы. Любые отклонения от этого макроскопического состояния крайне малы!

Пример

Предположим что одно макроскопическое состояние спиновой цепочки имеет значение энтропии 1 J/K, а другое - 1.001 J/K. Насколько более вероятно обнаружить систему в первом из этих состояний?

$$\frac{\Omega_2}{\Omega_1} = \frac{e^{S_2/k_B}}{e^{S_1/k_B}} = \frac{e^{0.72464 \cdot 10^{23}}}{e^{0.72536 \cdot 10^{23}}} = e^{7.2 \cdot 10^{19}}$$

$$e^{7.2 \times 10^{19}} = 10^{\log_{10} \left(e^{7.2 \times 10^{19}} \right)} = 10^{7.2 \times 10^{19} \times \log_{10} e} \approx 10^{3 \times 10^{19}}$$

$$1000\cdots000$$
 3×10^{19}

Оператор энтропии в квантовой статистике

В квантовой статистике положительно определенный эрмитов оператор энтропии определяется как логарифм матрицы плотности

$$\eta = -\ln
ho$$

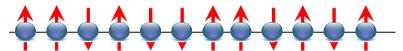
Энтропия квантовой системы: $S=<\eta>=-<\ln \rho>=-Sp\ (\rho \ln \rho)$

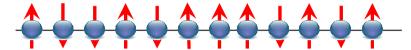
Физический смысл энтропии: вероятность обнаружить систему в состоянии с энергией $\ E = e^{S(E)}$

Эта вероятность максимальна если максимальна энтропия состояния

Закон возрастания энтропия

Рассмотрим две спиновых цепочки с числом состояний N_1 , N_2 и соединим их вместе так что полная энергия системы есть $E = E_1^0 + E_2^0$





Если разрешен обмен энергии между цепочками, то какова вероятность того, что первая система будет иметь новую энергию E_i ? Очевидно $E_2 = E - E_i$ и соответствующее число состояний есть

$$\Omega(E) = \sum_{E_i} e^{S_1(E_i)} e^{S_2(E - E_i)} = \sum_{E_i} e^{S_1(E_i) + S_2(E - E_i)}$$
(2.7)

Поскольку мы по прежнему полагаем что все состояния равновероятны, вероятность обнаружить систему в каком-то состоянии есть $1/\Omega(E)$. Энтропия системы пропорциональна очень большому числу частиц N и из всех возможных значений E_i следует выбрать то, которое соответствует максимуму полной энтропии, то есть

$$\frac{\partial S_1}{\partial E} \bigg|_{E_{max}} - \frac{\partial S_2}{\partial E} \bigg|_{E-E_{max}} = 0 \tag{2.8}$$

Закон возрастания энтропии

Сумма по числу состояний (2.7) приближенно равна

$$\sum_{E_i} e^{S_1(E_i) + S_2(E - E_i)} \approx e^{S_1(E_{max}) + S_2(E - E_{max})}$$

и полная энтропия объединенной системы или увеличилась или же осталась без изменений:

$$S(E) \approx S_1(E_{max}) + S_2(E - E_{max}) \ge S_1(E_1) + S_2(E - E_1)$$

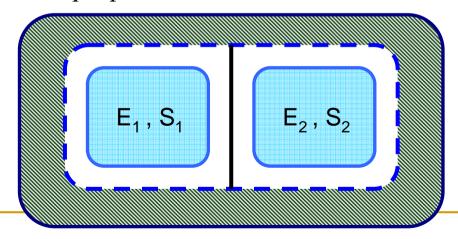
Ряд последовательно проходимых изолированной системой состояний соответствует все более вероятному состоянию, при этом **энтропия** системы с подавляющей вероятностью возрастает.

Закон возрастания энтропии является одной из формулировок второго начала термодинамики

Термодинамический контакт между двумя системами

Условие статистического равновесия является наиболее вероятным состоянием изолированной системы которое соответствует максимуму энтропии. Значение энтропии равновесной системы зависит от энергии E_{I} числа частиц N и внешних параметров (объем, давление и др.)

Рассмотрим условие равновесия системы, состоящей из двух изолированных подсистем, разделенных жестким непроницаемым теплоизолирующим барьером



Тепловой контакт между двумя системами

При тепловом контакте системы могут обмениваться энергией и в состоянии теплового равновесия усредненный поток энергии между двумя подсистемами равен нулю и энтропия объединенной системы максимальна по отношению к флуктуациям энергии между ними. Учитывая аддитивность энтропии $S = S_1 + S_2$

$$\delta S = \delta S_1 + \delta S_2 = \frac{\partial S_1}{\partial E_1} \delta E_1 + \frac{\partial S_2}{\partial E_2} \delta E_2 = 0$$

поскольку полная энергия термоизолированной объединенной системы сохраняется, $\delta E = \delta E_1 + \delta E_2 = 0$, то

$$\delta S = \left[\frac{\partial S_1}{\partial E_1} - \frac{\partial S_2}{\partial E_2} \right] \delta E_1 = 0 \tag{2.9}$$

Температура

Определяя обратную *температуру* как

$$\beta = \frac{1}{T} = \frac{\partial S}{\partial E} = \frac{\partial \ln \Omega(E)}{\partial E}$$
 (2.10)

условие максимума полной энтропии (2.9) можно записать как $T_1 = T_2$

$$\delta S = \frac{\partial S_1}{\partial E} \left| \begin{array}{c} \delta E_1 + \delta E \end{array} \right|_{E_2} \delta E_1 + \frac{\partial S_2}{\partial E} \left| \begin{array}{c} \delta E_2 - \delta E \end{array} \right|_{E_2} \delta E_2 = \left(\frac{\partial S_1}{\partial E} \left| \begin{array}{c} -\frac{\partial S_2}{\partial E} \left| \begin{array}{c} \delta E \end{array} \right|_{E_2} \right) \delta E = \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \delta E$$

Возрастание энтропии означает что если $\delta E > 0$, то $T_2 > T_1$ и температура уменьшилась у системы у которой уменьшилась энергия

Магнетизация. Закон Кюри

Используя формулу (2.4) можно определить температуру спиновой цепочки как

$$\frac{1}{T} = \frac{\partial S}{\partial E} = \frac{1}{\varepsilon} \ln \left(\frac{E_0/2 - E}{E_0/2 + E} \right) = \frac{1}{\varepsilon} \ln \left(\frac{\omega_{\downarrow}}{\omega_{\uparrow}} \right)$$

Тогда
$$\frac{\omega_{\downarrow}}{\omega_{\uparrow}}=e^{-arepsilon/T}$$
 или

Тогда
$$\frac{\omega_{\downarrow}}{\omega_{\uparrow}}=e^{-arepsilon/T}$$
 или $\omega_{\downarrow}=rac{1}{1+e^{-arepsilon/T}}, \qquad \omega_{\uparrow}=rac{e^{-arepsilon/T}}{1+e^{-arepsilon/T}}$

(Распределение Больцмана)

Если включено внешнее магнитное поле **B** , то $\varepsilon = g\mu$ **B** и полный MOMENT $M = g\mu N(\omega_{\uparrow} - \omega_{\downarrow})$ есть

$$M=g\mu N\left(rac{e^{-arepsilon/T}}{1+e^{-arepsilon/T}}-rac{1}{1+e^{-arepsilon/T}}
ight)=rac{g\mu N}{2} anhrac{g\mu B}{2T}$$
 Если $B\llrac{T}{g\mu}$ $Mpproxrac{g^2\mu^2NB}{4T}$ и магнитная восприимчивость парамагнетика в слабых полях полях есть (закон Кюри)

$$\chi = rac{g^2 \mu^2 N}{4T} \propto rac{1}{T}$$

Связь между статистическими и термодинамическими величинами. Температура

Энтропия (2.4) пропорциональна огромному числу $N \sim 10^{23}$. Практичнее определить ее как $S \to k_B S$, где $k_B = 1.381 \times 10^{-23} \text{JK}^{-1}$ -постоянная Больцмана. При этом $T \to T/k_B$ и температура

спиновой цепочки тогда

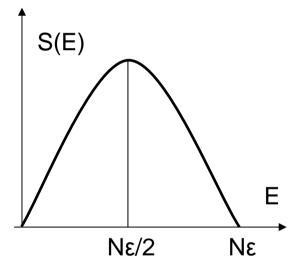
$$rac{1}{T} = rac{k_B}{arepsilon} \ln \left(rac{\omega_\downarrow}{\omega_\uparrow}
ight)$$

и если T
$$ightarrow \infty$$
, то $N_{\uparrow}/N = rac{1}{e^{arepsilon/k_BT} + 1}
ightarrow 1/2$

$$N_{\uparrow}/N = \frac{1}{e^{\varepsilon/k_B T} + 1} \to 1/2$$

Что происходит с состояниями для которых $N_1/N > 1/2$? При этом число микросостояний уменьшается с

ростом энергии, то есть температура становится отрицательной.



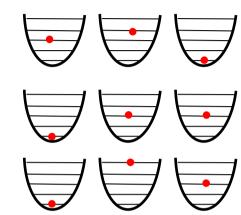
Состояния с отрицательной температурой возможны только если число всех возможных микросостояний конечно (в данном случае оно равно 2^N)

Еще один пример: система квантовых осцилляторов

Рассмотрим систему состоящую из *N* тождественных несвязанных квантовых одномерных гармонических осцилляторов. За вычетом энергии нулевых колебаний энергия системы есть

$$E = \Delta E \sum_{i=1}^{N} n_i, \quad \Delta E = \hbar \omega$$

 n_i – номер возбуждения i-го осциллятора



Если возбуждено М осцилляторных состояний, то числом способов выбрать М объектов из N (множественность системы) есть

$$\Omega(N,M) = rac{(N+M-1)!}{(N-1)!M!} pprox rac{(N+M)^{N+M}}{N^N M^M}$$

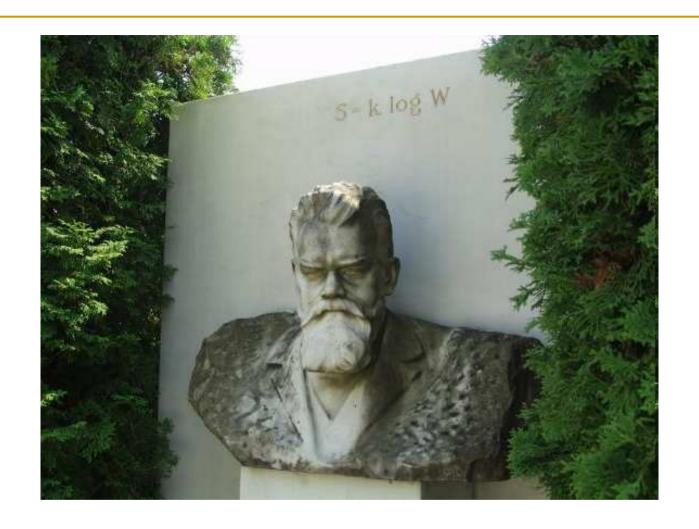
В этом случае энтропия системы вычисляется как

$$S = \ln \Omega(E) = N \left[-\frac{M}{N} \ln \frac{M}{N} + \frac{M+N}{N} \ln \left(\frac{M+N}{N} \right) \right]$$

= $N \left(-n \ln(n) + (1+n) \ln(1+n) \right), \qquad n = \frac{M}{N} = \frac{E}{N\Delta E}$

Температура системы
$$rac{1}{T} = rac{\partial S}{\partial E} = rac{1}{\Delta E} \ln \left(rac{1+n}{n}
ight)$$

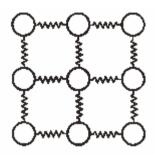
Вопрос: возможны ли в этой системе состояния с отрицательной температурой?



$$\beta = \frac{1}{T} = \frac{\partial S}{\partial E} = \frac{\partial \ln \Omega(E)}{\partial E}$$

Модель твердого тела Эйнштейна

В 1907 А.Эйнштейн предложил простую модель, позволившую объяснить термодинамические свойства твердого тела:



кристалл, содержащий N атомов моделируется 3N идентичными независимыми квантовыми гармоническими осцилляторами, энергия каждого осциллятора квантуется как целое число $n_{\rm i}$ единиц энергии $\varepsilon = \hbar \omega$. Трехмерный осциллятор изотропен по всем направлениям:

классический:
$$E = \frac{1}{2}mv^2 + \frac{1}{2}k\ r^2 = \left(\frac{1}{2}mv_x^2 + \frac{1}{2}k\ x^2\right) + \left(\frac{1}{2}mv_y^2 + \frac{1}{2}k\ y^2\right) + \left(\frac{1}{2}mv_z^2 + \frac{1}{2}k\ z^2\right)$$

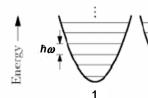
$$E_{i} = \hbar \omega \left(n_{i,x} + \frac{1}{2} \right) + \hbar \omega \left(n_{i,y} + \frac{1}{2} \right) + \hbar \omega \left(n_{i,z} + \frac{1}{2} \right) = \sum_{i=1}^{3} \varepsilon \left(n_{i} + \frac{1}{2} \right)$$

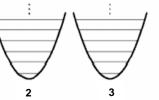
Внутренняя энергия твердого тела:

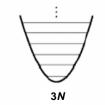
$$E = \sum_{i=1}^{3N} \mathcal{E} \left(n_i + \frac{1}{2} \right) = \sum_{i=1}^{3N} \mathcal{E} \, n_i + \sum_{i=1}^{3N} \frac{1}{2} \, \mathcal{E} = \sum_{i=1}^{3N} \mathcal{E} \, n_i + \frac{3N}{2} \, \mathcal{E} \right)$$
 энергия вакуума

Эффективная внутренняя энергия:

$$E = \sum_{i=1}^{3N} \varepsilon n_i$$







Множественность состояний в модели твердого тела

Макроскопическое состояние в модели твердого тела задается параметрами N и E, а микроскопическое состояние — квантовыми числами n_i набора 3N осцилляторов.

Кристалл, содержащий 1 атом:

I	II	III	E
0	0	0	0
1	0	0	1
0	1	0	1
0	0	1	1
2	0	0	2
0	2	0	2
0	0	2	2
1	1	0	2
1	0	1	2
0	1	1	2

$$\Omega(0) = 1$$

$$\Omega(1) = 3$$

$$\Omega(2) = 6$$

I	II	III	E
3	0	0	3
0	3	0	3
0	0	3	3
1	1	1	3
2	1	0	3
2	0	1	3
1	2	0	3
0	2	1	3
1	0	2	3
0	1	2	3

$$\Omega(3) = 10$$

Статистический вес состояния **N** осцилляторов (**N**/3 атомов) с распределенными между ними **M** квантов энергии

$$\Omega(N,M) = \binom{M+N-1}{M} = \frac{(M+N-1)!}{M!(N-1)!}$$

Связь между статистическими и термодинамическими величинами. Теплоемкость.

Теплоёмкость макроскопической системы при ряде ограничений можно определить как

$$C = \frac{\partial E}{\partial T} \tag{2.11}$$

Поскольку энтропия является функцией энергии, можно записать

$$rac{\partial S}{\partial T}=rac{\partial S}{\partial E}\cdotrac{\partial E}{\partial T}=rac{C}{T}$$
 то есть $\Delta S=\int_{T_1}^{T_2}\!\!\!\frac{C(T)}{T}dT$ (2.12)

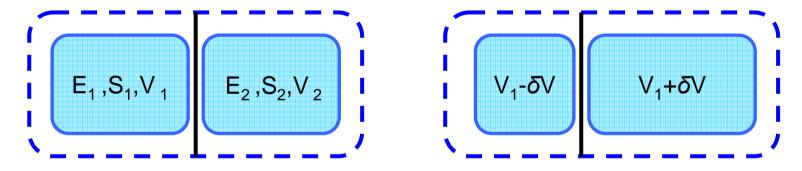
Повторное дифференцирование определения температуры дает

$$\frac{\partial^2 S}{\partial E^2} = -\frac{1}{T^2 C}$$

Если теплоёмкость положительна, то система является *термодинамически стабильной* (*исключение: черные дыры имеют отрицательную теплоёмкость!*)

Механический контакт между двумя системами

При механическом контакте системы разделены подвижным барьером и равновесие достигается при равном давлении на барьер с обоих сторон.



$$\delta S = \frac{\partial S_1}{\partial V_1} \delta V_1 + \frac{\partial S_2}{\partial V_2} \delta V_2 + \frac{\partial S_1}{\partial E_1} \delta E_1 + \frac{\partial S_2}{\partial E_2} \delta E_2 = 0$$
 (2.13)

Давление

В состоянии теплового равновесия выполняется условие $\delta S=0$ и, поскольку полный объем системы $V=V_1+V_2$ сохраняется, $\delta V=\delta V_1+\delta V_2=0$, и тогда

$$\delta S = rac{\partial S_1}{\partial V_1} \delta V_1 + rac{\partial S_2}{\partial V_2} \delta V_2 = \left[rac{\partial S_1}{\partial V_1} - rac{\partial S_2}{\partial V_2}
ight] \delta V_1 = 0$$
 (2.14)

Определим давление как

$$P = T \left(\frac{\partial S}{\partial V}\right)_{E,N} \tag{2.15}$$

Если система находится в состоянии теплового равновесия, то условие механического равновесия (2.14) можно записать как $P_1 = P_2$

Перенос частиц при контакте между системами. Химический потенциал.

Предположим что при механическом контакте возможна диффузия частиц различных типов через барьер. Сохранение полного числа частиц $N = N_1 + N_2$ означает что $\delta N = \delta N_1 + \delta N_2 = 0$, и равновесие достигается при условии

$$\delta S = \frac{\partial S_1}{\partial N_1} \delta N_1 + \frac{\partial S_2}{\partial N_2} \delta N_2 = \left[\frac{\partial S_1}{\partial N_1} - \frac{\partial S_2}{\partial N_2} \right] \delta N_1 = 0$$
 (2.18)

Определим *химический потенциал* как

$$\mu = -T \left(\frac{\partial S}{\partial N} \right)_{E,V} \tag{2.19}$$

Если система находится в состоянии теплового равновесия при постоянном объеме и температуре, то условие равновесия (2.18) можно записать как $\mu_1 = \mu_2$

Условия термодинамического равновесия

при контакте между двумя системами:

• Тепло передается от более горячей системы к более холодной.

Обмен энергией → T=const → Тепловое равновесие

• Система, находящаяся при более высоком давлении, расширяется сжимая систему с низким давлением.

Изменение объема → P=const → Механическое равновесие

 Частицы перемещаются от системы с большим химическим потенциалом к системе с меньшим значением µ.

Обмен частицами → µ=const → Химическое равновесие

Начала термодинамики

Рассмотрим термодинамическую систему энтропия которой зависит от энергии, объема и числа частиц. Тогда при малых изменениях этих параметров

$$dS = \frac{\partial S}{\partial V}dV + \frac{\partial S}{\partial E}dE + \frac{\partial S}{\partial N}dN$$
 (2.20)

Учитывая определения давления (2.15), температуры (2.10) и химического потенциала (2.19)

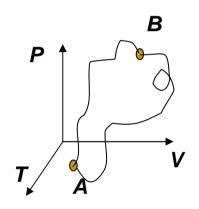
$$\frac{1}{T} = \frac{\partial S}{\partial E}; \quad P = T \frac{\partial S}{\partial V}; \quad \mu = -T \frac{\partial S}{\partial N}$$

это выражение можно записать как

$$TdS = dE + PdV - \mu dN \tag{2.21}$$

Внутренняя энергия

Внутренняя энергия системы частиц **E**, определяется как сумма (1) кинетических энергий частиц в системе отсчета, в которой центр масс системы покоится (трансляции, вращения, вибрации), и (2) потенциальной энергии взаимодействия частиц.



$$E = E_{kinetic} + E_{potential}$$

Внутренняя энергия является функцией состояния системы, то есть она зависит только от значения макроскопических параметров а не от способа приготовления системы (траектории в пространстве параметров).

В состоянии термодинамического равновесия [f(P,V,T)=0] : **Е**= **Е**(**V**, **T**)

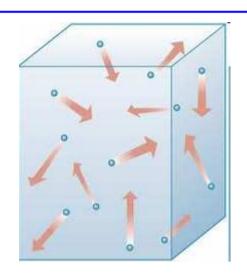
В простейшем случае идеального газа взаимодействие между частицами

отсутствует:
$$E = E(T) = E_{kinetic}$$
; $E_{potential} = 0$

Модель идеального газа

Модели вещества: газ (случайное движение частиц)

твердое тело (позиции частиц фиксированы)



Воздух при нормальных условиях:

~ 2.7·10¹⁹ молекул в 1 cm³

Размер молекул ~ (2-3)·10⁻¹⁰ m, расстояние

между молекулами ~ 3·10⁻⁹ m

Средняя скорость - 500 m/s

Средняя длина пробега - 10⁻⁷ m

Число столкновений в 1 сек - 5 ⋅10⁹

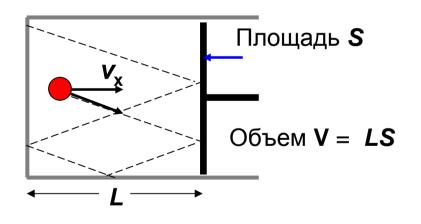
Модель идеального газа связана с рядом упрощений

- все молекулы идентичны, их число N очень велико;
- низкая плотность газа;
- молекулы очень малы по сравнению с расстояниями между ними;
- молекулы не взаимодействуют друг с другом;
- движение молекул описывается законами классической механики;
- столкновения между молекулами и стенками ящика абсолютно упруги.

температура идеального газа $T \Leftrightarrow кинетическая энергия$ движения молекул

Давление *Р* – результат столкновений молекул со стенками ящика.

Давление = Сила/Площадь =
$$[\Delta P / \Delta t] / S$$



При каждом упругом столкновении:

$$\Delta p_{x} = 2 m v_{x}$$

Время между столкновениями: $\Delta t = 2 L/v_x$

$$p_i = \frac{2m_i v_x}{2L/v_x} \frac{1}{S} = m_i v_x^2 \frac{1}{V}$$

Для
$$N$$
 молекул - $P = \sum\limits_{i=1}^{N} p_i = rac{1}{V} \sum\limits_{i=1}^{N} m_i v_{\mathrm{x}}^2 = rac{Nm}{V} < v_{\mathrm{x}}^2 >$

$$PV = \sum_{i=1}^{N} mv_{\mathbf{x}}^2 = Nm < v_{\mathbf{x}}^2 >$$

$$PV = Nk_BT$$

$$m < v_{\mathbf{x}}^2 >= k_BT$$

Средняя кинетическая энергия движения молекул идеального газа :

$$< E_{kin} > = \frac{1}{2}m < v^{2} > = \frac{1}{2}m < v_{x}^{2} + v_{y}^{2} + v_{z}^{2} >$$

$$= \frac{3}{2}m < v_{x}^{2} >$$

$$\langle E_{kin} \rangle = \frac{3}{2} k_B T$$

температура идеального газа пропорциональна средней кинетической энергии его молекул

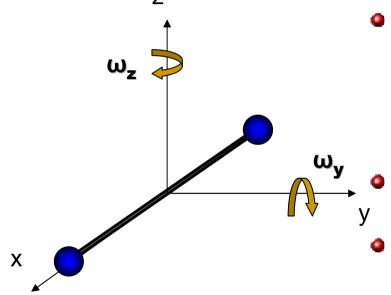
Внутренняя энергия одноатомного идеального газа не зависит от его объема:

$$E = \frac{3}{2}Nk_BT; \qquad PV = \frac{2}{3}E$$

Теорема о равнораспределении

Теорема о равнораспределении кинетической энергии по степеням свободы:

На каждую независимую квадратичную степень свободы приходится средняя тепловая энергия ½ kT

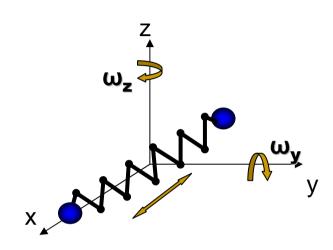


 В одноатомном идеальном газе каждая молекула имеет среднюю кинетическую энергию

$$\langle E_{kin} \rangle = \frac{1}{2} m \langle v^2 \rangle = \frac{1}{2} m \langle v_{\mathbf{x}}^2 + v_{\mathbf{y}}^2 + v_{\mathbf{z}}^2 \rangle$$

- В этом случае имеется 3 трансляционных степени свободы
- Средняя кинетическая энергия молекулы есть $3(1/2 \ kT) = 3/2 \ kT$.
- Для классического двухатомного газа имеется 5 степеней свободы: 3 трансляционных + 2 вращательных
- Молекула двухатомного газа может вращаться вокруг оси х и оси у.
- Соответствующие энергии вращения есть $\frac{1}{2} I_x \omega x^2$ and $\frac{1}{2} I_v \omega y^2$.

Теорема о равнораспределении



Все 3 типа степеней свободы квадратично зависят от скорости и подчиняются принципу равнораспределения энергии

• Средняя энергия молекулы двухатомного газа:

$$E = 3/2 k_B T + 2/2 k_B T + 1/2 k_B T + 1/2 k_B T$$

= 7/2 k_BT?

 В квантовой теории уровни энергии вращательного движения квантуются:

$$E = \frac{L^2}{2I} = \frac{\hbar^2 l(l+1)}{2I}$$

- Равнораспределение применимо не только к кинетической, но и к потенциальной энергии: модель гармонического осциллятора.
- Вибрационные степени свободы:

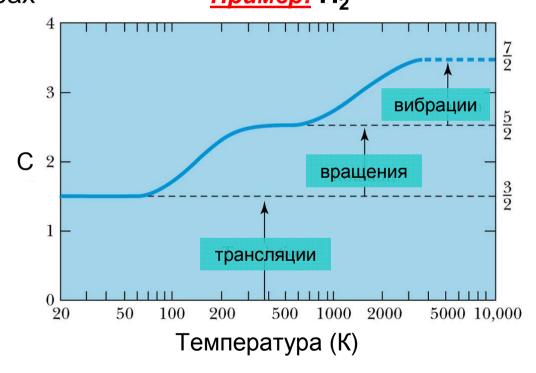
$$E_{m{kin}} = rac{1}{2} m \langle v^2
angle, \quad U_{m{pot}} = rac{1}{2} k \Delta x^2$$

Для квантового двухатомного газа имеется 6 степеней свободы: 3 трансляционных + 2 вращательных +1 вибрационная (со вкладом как в кинетическую так и в потенциальную энергию)

Связь с экспериментальными данными

Сравним нашу модель с экспериментальными данными. Измеряемым параметром является *теплоемкость С=dEldT*

теплоемкость двухатомного газа зависит от температуры: различные степени свободы «включены» при разных температурах
 Пример: Н₂



Вопрос: что произойдет при очень высоких температурах?

Функции и уравнения состояния

Сколько переменных необходимо задать чтобы полностью описать равновесное состояние термодинамической системы? В случае простой однокомпонентной системы их должно быть как минимум 3, например **T**, **P**, **V** . Если количество переменных больше 3, то они связаны друг с другом *уравнениями состояния*, например уравнение состояния идеального газа

$$PV = Nk_BT (2.18)$$

связывает 4 переменные. Другие примеры – уравнение Ван-дер-Ваальса

$$\left(P + \frac{aN^2}{V^2}\right)(V - bN) = Nk_BT$$
(2.19)

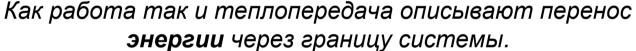
Уравнение состояния парамагнетика (закон Кюри) $M=Crac{VB}{T}$

В 3-х мерном пространстве P-V-T равновесному состоянию соответствует точка, уравнению состояния соответствует поверхность.

Работа и теплота

Изменение внутренней энергии ΔE возможно двумя способами:

- **Q** обмен энергией между системой и окружением за счет теплопередачи через границу
 - нагрев (Q > 0) /охлаждение (Q < 0)
- **A** любой другой способ передачи энергии через границу
 - работа



Процессы теплопередачи:

теплопроводность: передача энергии при столкновении молекул;

более быстрая молекула передает энергию

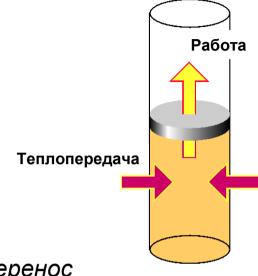
медленной молекуле.

конвекция: передача энергии макроскопическим потоком жидкости

или газа

излучение: передача энергии при излучении/поглощении

электромагнитного излучения.



Первое начало термодинамики

Первое начало термодинамики: изменить внутреннюю энергию макроскопической системы можно или совершая работу или за счет теплопередачи.

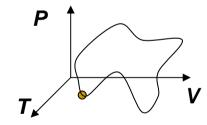
$$\Delta E = Q + A$$
 : Закон сохранения энергии

Считается что тепло, подводимое к системе Q и работа A положительны если энергия системы увеличивается.

В случае циклических процессов

$$(E_i = E_f) \Rightarrow Q = -A$$
.

Если при этом система остается термоизолированной, Q = 0 то A = 0



Альтернативная формулировка:

Невозможно создать вечный двигатель первого рода

Математическое отступление: полные и неполные дифференциалы

Для элементарного количества теплоты $\mathbf{\delta Q}$, элементарной работы $\mathbf{\delta A}$ и малого приращения \mathbf{dE} внутренней энергии первое начало термодинамики записывается как $\mathbf{dE} = \delta Q - \delta A$

где dE - полный дифференциал энергии (функции состояния), а δQ и δA — неполные дифференциалы количества теплоты и работы, которые не являются функциями состояния.

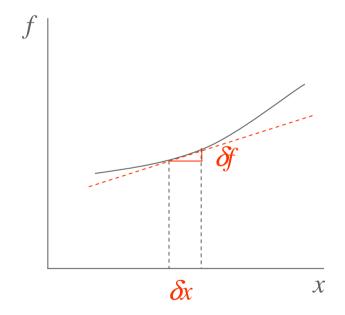
Рассмотрим дифференциал dF(x,y) = A(x,y) dx + B(x,y) dy. Он является **полным** если

$$A(x,y)=ig(rac{\partial F}{\partial x}ig)_y,\quad B(x,y)=ig(rac{\partial F}{\partial y}ig)_x$$
 или $ig(rac{\partial^2 F}{\partial x\partial y}ig)=ig(rac{\partial^2 F}{\partial y\partial x}ig)$

Задача: проверить, являются ли полными дифференциалы

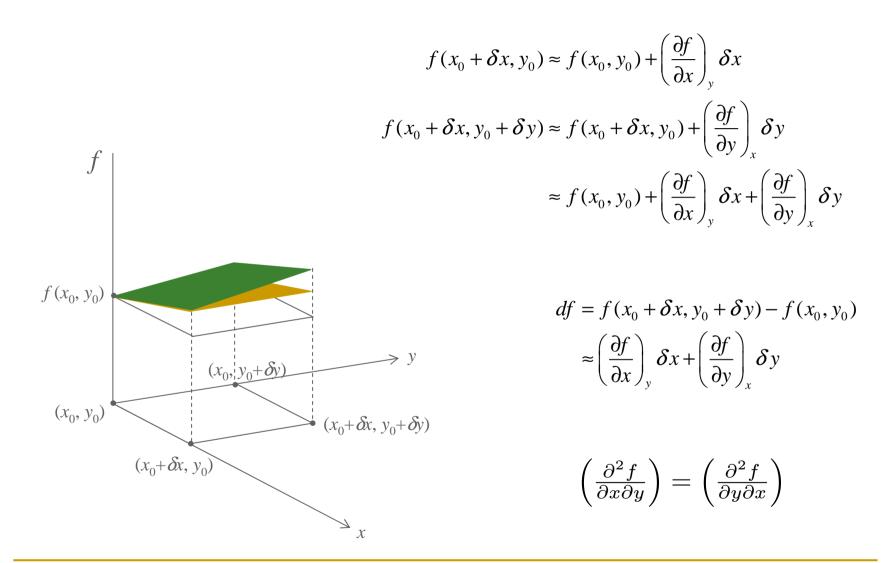
$$df = 2xy^3dx + 3x^2y^2dy;$$
 $dg = 2x^2y^3dx + 3x^3y^2dy$?

Дифференциал функции одной переменной



$$\delta f \approx \frac{df}{dx} \delta x$$

Дифференциал функции двух переменных



Полный и неполный дифференциалы можно проинтегрировать от (x_1, y_1) до (x_2, y_2) , в первом случае результат

$$\int_{x_1,y_1}^{x_2,y_2} dF = F(x_2,y_2) - F(x_1,y_1)$$

зависит только от значений функции в начальной и конечной точках, значение интеграла от неполного дифференциала зависит от контура интегрирования.

Полезное правило Эйлера:
$$\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1$$
 если $z=z(x,y),$ то
$$dz=\left(\frac{\partial z}{\partial x}\right)_y dx + \left(\frac{\partial z}{\partial y}\right)_x dy;$$
 и если $z=$ const,
$$0=\left(\frac{\partial z}{\partial x}\right)_y + \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial y}{\partial x}\right)_z$$

Для термодинамической функции состояния F = F(V,T,P)

$$dF = (\partial F/\partial V)_{T,P}dV + (\partial F/\partial T)_{P,V}dT + (\partial F/\partial P)_{V,T}dP,$$

причем $\partial^2 F/\partial V \partial T = \partial^2 F/\partial T \partial V$, etc.



Квазистатические процессы

Квазистатическим или квазиравновесным процессом называется достаточно медленный процесс в ходе которого **любое** промежуточное состояние может быть рассмотрено как равновесное. (Все макроскопические параметры хорошо определены для промежуточных состояний.

Преимущество такого описания: состояние системы в ходе квазиравновесного процесса описывается тем же небольшим набором макроскопических параметров, что и равновесное состояние системы. (Для идеального газа, например, это T и P). Если же процесс неравновесен (например, турбулентный поток жидкости), число макроскопических параметров огромно и/или они отличаются от параметров равновесной системы.

Квазиравновесные процессы:

• Изохорический: V = const

Изобарический: P = const

• Изотермический: T = const

Адиабатический: Q = 0

В ходе квазиравновесного процесса P, V, T хорошо определены — путь между начальным и конечным состоянием соответствует непрерывной линии в пространстве параметров. $\uparrow P$

Работа

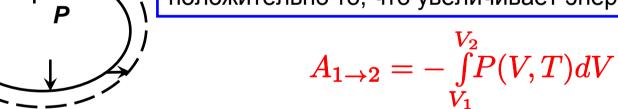
 Δx

Работа совершенная внешней силой действующей на поршень:

$$A = (PS) dx = P (Sdx) = -PdV$$

Сила

Работа *А считается положительной* если объем газа уменьшается (сжатие газа увеличивает его внутреннюю энергию); если *dV>0*, то работа *А* отрицательна (*Эгоистический принцип*: положительно то, что увеличивает энергию).

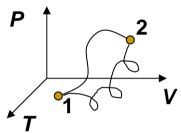


A = - PdV справедливо в случае произвольной деформации границы системы

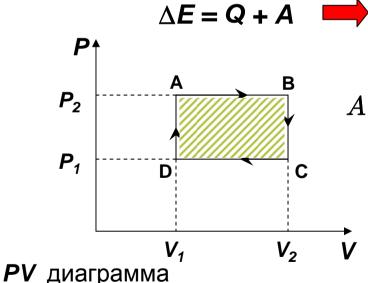
$$dE = Q - PdV$$

Работа не обязательно связана с изменением объема (эксперименты Д.Джоуля (1845) по определению связи механической работы с нагреванием).

Систему можно перевести из состояния 1 в состояние 2 по бесконечному числу путей в пространстве параметров, на каждом из них определена своя функция P(T, V)



Так как работа произведенная над системой зависит не только от начального и конечного состояния, но и от всех промежуточных состояний A не являются функцией состояния системы

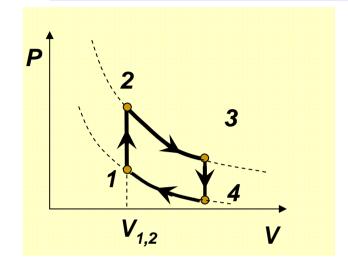


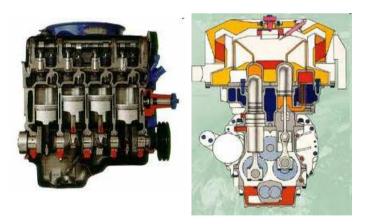
Поскольку энергия **E** является функцией состояния а работа **A** нет, то количество теплоты **Q** также не функция состояния

$$A = A_{AB} + A_{CD} = -P_2(V_2 - V_1) - P_1(V_1 - V_2)$$
$$= -(P_2 - P_1)\Delta V$$

работа отрицательна при круговом процессе происходящем «по часовой стрелке» и положительна в противоположном случае

Обратимые и необратимые процессы





Обратимым называется

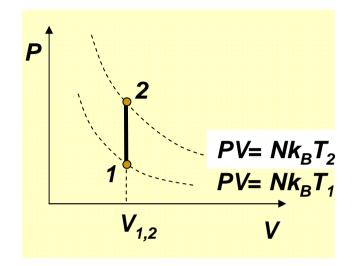
квазиравновесный процесс, допускающий возможность возвращения системы в первоначальное состояние без изменения окружающей среды: $\oint dE = 0$

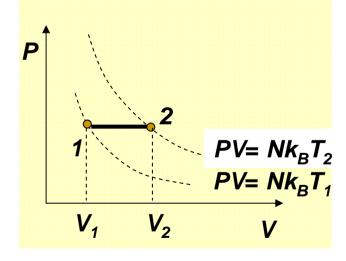
Обратимый процесс обязательно должен быть квазистатическим, но произвольный квазистатический процесс не всегда будет обратимым (гистерезис, диссипация энергии и др.)

Равенство A = ∫PdV справедливо только для обратимых процессов. Работа произведенная при необратимых процессах удовлетворяет неравенству

$$A < \int P dV$$

Квазистатические процессы в идеальном газе





■ Изохорический (V = const)

$$A_{1\to 2} = 0$$

Теплоёмкость процесса: $C_V = \left(rac{\partial E}{\partial T}
ight)_{V=const}$

$$Q_{1\to 2} = dE = \frac{3}{2}Nk_B(T_2 - T_1) = C_V\Delta T$$

Изобарический (P = const)

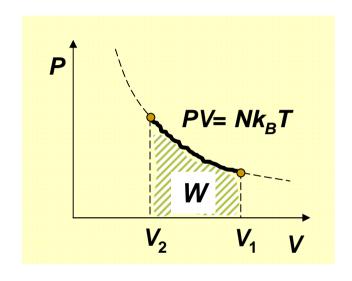
$$A_{1\to 2} = -\int_{V_1}^{V_2} P(V,T)dV = -P(V_2 - V_1) < 0$$

Теплоёмкость процесса:

$$C_P = \left(\frac{\partial Q}{\partial T}\right)_P = \frac{\Delta E + P\Delta V}{\Delta T}$$

$$= C_V + P\frac{\Delta V}{\Delta T} = \frac{5}{2}Nk_B$$

Изотермический процесс в идеальном газе



 \bullet Изотермический (T = const)

При изотермическом процессе

$$Q_{1\to 2} = -A_{1\to 2}, \quad dE = 0$$

$$egin{aligned} A_{1 o 2} &= -\int\limits_{V_{1}}^{V_{2}} P(V,T) dV = -Nk_{B}T\int\limits_{V_{1}}^{V_{2}} rac{dV}{V} \ &= Nk_{B}T\lnrac{V_{1}}{V_{2}} \end{aligned}$$

Работа $A_{1\to 2}$ положительна если $V_1 > V_2$ (сжатие) и отрицательна если $V_1 > V_2$ (расширение)

Адиабатический процесс в идеальном газе

система термически изолирована:

$$Q_{1\to 2}=0, \quad dE=A_{1\to 2}$$

$$A_{1\to 2} = -\int_{V_1}^{V_2} P(V,T)dV$$

Чтобы вычислить $A_{1\rightarrow 2}$ необходимо знать P(V,T)Внутренняя энергия одноатомного идеального газа

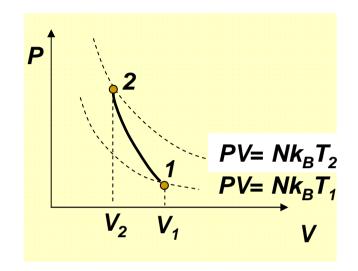
$$E = \frac{3}{2}Nk_BT \implies dE = \frac{3}{2}Nk_BdT = -PdV$$

$$PV = Nk_BT \implies PdV + VdP = Nk_BdT$$

$$PdV + VdP = -\frac{2}{3}PdV \quad | \div PV$$

$$\frac{dV}{V}\left(1+\frac{2}{3}\right)+\frac{dP}{P}=0 \left| \int , \quad \gamma=\frac{5}{3} \quad \begin{array}{c} \textbf{(Показатель} \\ \textbf{адиабаты} \end{array} \right) \qquad \qquad \gamma \int\limits_{V}^{V} \frac{dV}{V} + \int\limits_{P}^{P} \frac{dP}{P}=0$$

$$\gamma \int_{V_1}^{V} \frac{dV}{V} + \int_{P_1}^{P} \frac{dP}{P} = 0$$



$$\ln\left(\frac{V}{V_1}\right)^{\gamma} = \ln\left(\frac{P_1}{P}\right) \implies PV^{\gamma} = P_1V_1^{\gamma} = const$$

На PV диаграмме адиабата круче чем изотерма: при адиабатических процессах газ производит работу за счет своей внутренней энергии, его температура при этом уменьшается.

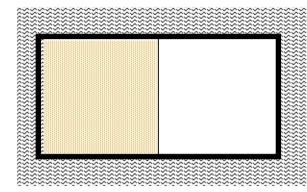
$$A_{1\to 2} = -\int_{V_1}^{V_2} P(V,T)dV = -\int_{V_1}^{V_2} \frac{P_1 V_1^{\gamma}}{V^{\gamma}} dV$$

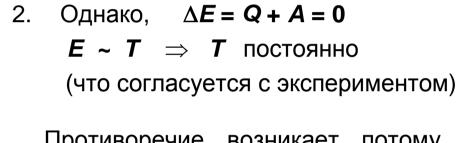
$$= -P_1 V_1^{\gamma} \frac{V^{1-\gamma}}{1-\gamma} \Big|_{V_1}^{V_2} = P_1 V_1^{\gamma} \frac{1}{\gamma-1} \left(\frac{1}{V_2^{\gamma-1}} - \frac{1}{V_1^{\gamma-1}} \right)$$

$${\color{red} {\it 3adaчa:}}$$
 проверить что ${\color{gray} dE=rac{3}{2}Nk_B\Delta T=A_{1
ightarrow 2}}$

Неравновесные адиабатические процессы

Свободное расширение идеального газа





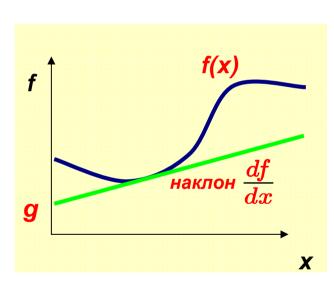
Противоречие возникает потому что свободное расширение идеального газа не является квазистатическим процессом!

$$TV^{\gamma-1} = const$$

справедливо только для квазиравновесных процессов.

Математическое отступление: преобразование Лежандра

Рассмотрим функцию f(x) переменной x. Преобразование Лежандра позволяет определить функцию g(y) новой независимой переменной



$$y = \frac{df}{dx}$$

Уравнение касательной к функции в точке 🗶

$$f(x)=rac{df}{dx}x+g$$
 , или $g=f-yx$ и $rac{dg}{dy}=-x$

Если имеется две (или более) переменных, то

$$g(y_1, y_2) = f(x_1, x_2) - \frac{\partial f}{\partial x_1} x_1 - \frac{\partial f}{\partial x_2} x_2$$

Пример: переход от функции Лагранжа к функции Гамильтона связанный с заменой переменных $\dot{q}_i
ightarrow p_i$:

$$-H = L - \sum_{i} p_{i} \dot{q}_{i}$$

Энтальпия

При изобарическом процессе (P = const):

$$dE = Q - P\Delta V = Q - \Delta(PV) \Rightarrow Q = \Delta E + \Delta(PV)$$

$$H \equiv E + PV \Rightarrow$$
Энтальпия

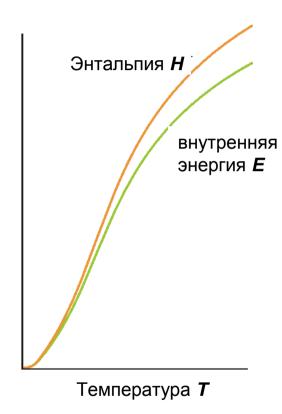
(преобразование Лежандра для энергии)

Поскольку внутренняя энергия E, давление P и объем V являются функциями состояния, ей также являются энтальпия. При изобарических процессах изменение энергии системы равно изменению энтальпии.

изохора: $Q = \Delta E$

изобара: $Q = \Delta$

В обоих случаях **Q** не зависит от пути между 1 и 2.

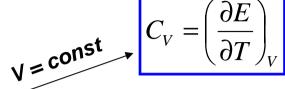


Следствие: энергия высвобожденная (поглощенная) в ходе изобарического процесса зависит только от начального и конечного состояния системы.

Энтальпия идеального газа: $H = E + PV = \frac{3}{2}Nk_BT + Nk_BT = \frac{5}{2}Nk_BT$

$\mathsf{Tennoemkocth}\ C_V$ и C_P

$$C = \frac{\delta Q}{dT} = \frac{dE + PdV}{dT}$$



Теплоемкость при постоянном объеме

$$C_{P} = \left(\frac{\partial H}{\partial T}\right)_{P}$$

Теплоемкость при постоянном давлении

Чтобы найти C_P и C_V необходимо уравнение состояния f(P,V,T)=0 и внутренняя энергия E=E(V,T)

идеальный газ
$$E=rac{3}{2}Nk_BT; \qquad H=rac{5}{2}Nk_BT$$

$$C_V = \frac{3}{2} N k_B$$

$$C_P = \frac{5}{2} N k_B$$

По правилу Эйлера
$$\left(\frac{\partial E}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_E \left(\frac{\partial T}{\partial E}\right)_V = -1$$

$$\left(rac{\partial E}{\partial V}
ight)_T = -\left(rac{\partial T}{\partial V}
ight)_E \left(rac{\partial E}{\partial T}
ight)_V = -C_V \left(rac{\partial T}{\partial V}
ight)_E$$

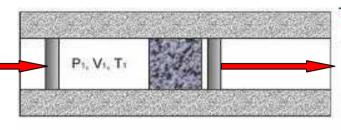
Температура *Т*

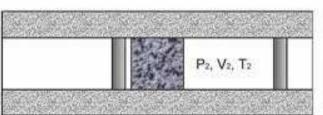
Процесс Джоуля-Томпсона

Медленная прокачка газа через пористую перегородку под постоянным давлением в термически изолированной системе (Q = 0): (P_1 , V_1 , T_1) \rightarrow (P_2 , V_2 , T_2)

Полная работа
$$A = -P_1(0 - V_1) - P_2(V_2 - 0)$$

= $P_1V_1 - P_2V_2 = \Delta E$





При этом

$$\Delta H = \Delta E + \Delta (PV) = P_1 V_1 - P_2 V_2 + P_2 V_2 - P_1 V_1 = 0$$

Процесс Джоуля-Томпсона это обратимый процесс при постоянной энтальпии

По правилу Эйлера
$$\left(\frac{\partial T}{\partial P}\right)_H \left(\frac{\partial H}{\partial T}\right)_P \left(\frac{\partial P}{\partial H}\right)_T = -1$$

или

$$\left(\frac{\partial H}{\partial P}\right)_T = -\left(\frac{\partial T}{\partial P}\right)_H \left(\frac{\partial H}{\partial T}\right)_P = -C_P \left(\frac{\partial T}{\partial P}\right)_H$$

Коэффициент Джоуля-Томпсона

$$\mu = \left(\frac{\partial T}{\partial P}\right)_H$$

Для идеального газа µ=0

Подводя итоги: квазиравновесные процессы в одноатомном идеальном газе

$$\Delta E = E_2 - E_1$$

Процесс	Δ E	Q	A	Уравнение
• изобара (∆ <i>P</i> =0)	$\Delta E = \frac{3}{2}Nk_B\Delta T = \frac{3}{2}P\Delta V$	$rac{5}{2}P\Delta V$	$-P\Delta V$	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$
• изохора (Δ <i>V</i> =0)	$\Delta E = \frac{3}{2}Nk_B\Delta T = \frac{3}{2}V\Delta P$	$rac{3}{2}V\Delta P$	0	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$
• изотерма (∆ <i>T</i> =0)	0	-A	$Nk_BT\lnrac{V_1}{V_2}$	$P_1V_1 = P_2V_2$
• адиабата (Q=0)	$\Delta E = \frac{3}{2}Nk_B\Delta T = \frac{3}{2}\Delta(VP)$	0	Δ Ε	$P_1V_1^{\gamma} = P_2V_2^{\gamma}$