1. Verify that the Lax equation \(L_t = [M, L] \) for the Lax pair given by the matrix linear differential operators

\[
L = \begin{pmatrix} -i\partial_x & \psi^*(x) \\ -\psi(x) & i\partial_x \end{pmatrix},
\]

\[
M = \begin{pmatrix} -4i\lambda^3 + 2|\psi|^2 + \psi^*\psi_x - \psi^*\psi^*_x & -4i\lambda^2\psi^* - 2i\lambda\psi^*_x + i\psi^*_{xx} + 2i\psi^*\psi_x \\ -4i\lambda^2\psi + 2i\lambda\psi_x + i\psi_{xx} + 2i\psi^2\psi^* & 4i\lambda^3 - 2\lambda|\psi|^2 - \psi_x\psi^* + \psi^*_{x} \end{pmatrix},
\]

where the real spectral parameter \(\lambda = \text{const} \), is equivalent to the nonlinear Schrödinger equation

\[
i\psi_t + \psi_{xx} + 2|\psi|^2\psi = 0
\]

2. Using the Lax matrices of the Problem 1 solve the problem of the time evolution of the scattering data for the nonlinear Schrödinger equation. Show that the scattering data are reflectionless.

3. Hirota’s Method. Linearize the generalized sine-Gordon equation \(u_{xt} + m^2\sin u = 0 \), \(m^2 \) is a constant, by the transformation \(u = 2i\log f \). Using the substitution \(f = 1 + f^{(1)} + f^{(2)} + \ldots \) construct

(a) One-soliton (kink) solution

(b) Two-kink solution

4. Solve the problem of small excitations \(u(x, t) = u_0 + \phi \) around the kink solution \(u_0 = 4\arctan e^{x-x_0} \) of the sine-Gordon model given by the equation

\[
\phi_{tt} - \phi_{xx} + \phi\cos u_0 = 0
\]

Find the eigenfunctions of the continuum part of the spectrum. Show that the potential created by the soliton is reflectionless.

5. Analyse the effect of small perturbation of the \(\phi^4 \) kink solution given by the equation

\[
\phi_{tt} - \phi_{xx} - m^2\phi + \lambda\phi^3 + \varepsilon \frac{m^3}{\sqrt{\lambda}} = 0
\]

where \(m, \lambda \) are the constants of the non-perturbed solution \(\phi_0 = \frac{m}{\sqrt{\lambda}}\tanh \frac{m^2}{\sqrt{\lambda}} \) and \(\varepsilon \ll 1 \).