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The ADS/CFT correspondence: a brief summar

Q Originally, the AdS/CFT correspondence provides ar  elation between string theory
and/or (super)gravity in asymptotically anti-de Sitt er (AdS) space-time (the “bulk”)
and Conformal Field Theory (CFT) on the boundary. (Example: Type IIB string

theory on AdS ¢ x S®>— N=4 strongly coupled SUSY Yang-Mills gauge theoryo n AdS:
boundary - Maldacena, Witten... )

& Such correspondence allows us to compute Quantum Fi eld Theory ob servables
on the boundary by expanding around classical solut ions of the g ravity (+ other
fields) theory in the bulk (large N expansion using saddle point approximation).

& Correlation functions of the QFT on the boundary in the strong ¢ oupling regime
can be computed from classical gravity solutions in the bulk: t he bulk quantum
corrections are 1/N quantum corrections.

@ The boundary/bulk connection provides an explicit r ealization of the so
called holographic principle




AdS/CFT correspondence: another view

M The dual gravitational system has at least one extr  a dimension z;
the field theory properties can be extracted by wo  rking on the boundary.

M The extra dimension z should be interpreted as an energy scale.

® It represents the renormalisation group flow of the quantum field theory
defined on the boundary.

B The AJS/CFT correspondence " geometrises " the field theory energy scale.

B Geometrisation : in the dual bulk gravitational description the en ergy scale
IS treated geometrically on an equal footing to the spatial dire ctions of the
boundary field theory




Einstein-Hilbert action in AdS space

1 d(d—1)

S = 2—&2 /dd_l_lw\/ —g(R — 2A), A= —W <0

Equations of motion and highly symmetrical vacuum solution:

—1
d 2 2
Ryy = =759 e ds2=—(1 + %)dﬁ + (1 + %) dr? + r?dQ3_,
@ The limit r << L reduces AdS to Minkowski space.
@ In the opposite limit L << r the total metric becomes the Poincaré metric

d
ds® = 75 (—dt®> + da} +dad +---+da? )+ Ldr? | Xei=1

=1

2

Change of variables: _ _ L2 2 L 2 2
(Poincaré coordinates) L= . [ds T2 (_dt + dzidz; + dz )

@ Coordinates on the boundary: (t, x;)
@ Extra radial coordinate z running from z=0 (the boundary) to z = 00 (the origin)

@ Each radial slice is a d-dim Minkowski space



Conformal symmetry and AdS isometries

Rotations

Translations
@ Generators:

Dilatations

D
K, = ’5(3323u — 2%%3'/) Special conformal transformations I

[ds2 = L7 (a2 + dwidoi + d2?) ]

The symmetry group of the AdS,, metric is the conformal group in
d-dim Minkowski spacetime: SO(2,d).
A subgroup is a scaling x Poincare transformations

The symmetries of the bulk action act on the OFT on the AdS boundary
boundary quantum field theory as conformal === is CFT
transformations

Deformations of the geometry away from AdS can be th  ought of as
deformations of the field theory away from conforma | fixed point



Planar AdS,.: Renormalisation group flow

2 2
2 _ T 2 2 2 2
ds _ﬁ(—dt + dz —I—dy)—l—r—2dr [z—L—2 ]
L* 2 2 2 T
@ Scale invariance: T2 (dz" — di* + da” + dy°)

{z,t,z,y} — {Az, A\t, Az, Ay}

[IR:scaIe z—o00 (r—0), z— o0, y—>oo]
UV:scale 2—0 (r—>o), 2—0, y—0

A classical approximation for the gravity

theory will be valid if L+1/G>>1 258 Y
/ (r — )
/

IR /\
z— 00 (r—0)




Holographic correspondence

@ QFT generating functional: Z QFT [@wAeisgy?oQ[:i

(O(z)) = 1 07 Fundamental A source Gauge invariant
- Z 0Py fields of QFT (non-dynamical) || operator of the QFT

The idea of holography: to promote the source @, to a dynamical field in the bulk
(Gubser, Klebanov, Polyakov and Witten, 1998)

The QFT operators defined on the z=0 boundary are given by the theory in the bulk

The boundary value of the bulk field @ —® gives a backround source
for the field theory operator
PP ]

Holographic correspondence: [ZQFT[(I)O] ~ £iSbut

AdS bulk QFT on the boundary
dynamical field & Operator Ol




Holographic correspondence

The catch: suppose we hav®QrT - which theory of gravity the bulk it corresponds to?

@ Approach: Start from the bulk gravity and identify the bounda ry theory

q’—)‘bo]

[ZbUlk |<I>(z~0,:c) — (exp de‘V _90(1)0(517)0(-’13» ] — [ZQFT [(130] s e Obulk

boundary

1 5ZQFT . 51n ZQFT . 5Sbulk:

O@) = Zomr 60y~ 00~ 0%

Simple analogy: mechanical action as a function of boundary conditions (on-shell action)

T
T d oL . 1" 0S OL
S:bfL(:B,a:,t)dt —=> 5S—O/dtmw+ [%533]0 —>4 9= o T:p(T)



How It works: massive scalar field inAdS

= 9,(v/]9lg"8,¢) = m*/|gl¢

) Ansatz: ¢ = ¢(z)et*®
2

= — (77ij drtdx’ + dz2) (Translation invariance

e zdcccccccc ) parallel to the boundary)

Equation of motion:

Sl = 5 [d* /|| [¢" 0,00, +m’¢’]

1 2z 2 _
\/gaz(\/ig 0.) +m ) #(z) =0

—2%119, (27919, )p(2) + (k2% + m?L?)¢(2) =

(gij kikj —

[V][<H

¢(2) = c12 J% (kz) + sz%Yi(kz) IR Asymptotic at z —o0 : J% (kz) ~ e k=

X

Bessel function of the first kind J (2) Bessel function of the second kind Y (2)




How It works: massive scalar field inAdS

UV Asymptotic at z — 0 : ¢(2) — 2° —2H19,(27418,)(2) + (K22 +mPL?)¢(2) =0
A

—

}

(k%22 — A(A —d) + m?L?)2° =0; = as z—0 | A(A—d)=m?L?

The roots A, — & i le + m2L2 Breitenlohner-Freedman bound:
d

2
mip = — (5) > m2L?

@ The solution near the boundary:

The boundary condition:
o= () w0 ()0 ey
g—izg—ioz p(0) => a(%fqb) S T0.0) = 6¢?05,w)__ﬂ(0’x)
() o

I(z,z) = /|glg*0:¢ ~ (g)ﬂ?—z [(%)A_¢o+(%)A+¢1] [<Q> ;Z) —% 1]




How It works: a beautiful/perverse way to derive Oim's law

Ohm's law : relation between the induced current densityf(t) and external electric field E(t)

Fourier transform: [j(w) = a(w)E(w)J Drude model: o(w) = 72—

High frequencies:
@ Drude model: o —-1/iwt

@ Field theory: particle -hole |
production _(graphene )
\

ot ot

(Z. Q. Li, et al, Nature Physics 4, 532 (2008))

a e
[

@ In d=2+1 o is dimensionless, the model
manifests its scale invariance

| 1,000 2,000 GDOG 4000 EOD0 G000 7000 00

ol
?
@ Problems with understanding of strongly c
interacting systems e.g, unconventional o] = 02/3

superconductors ( cuprates )

0 1000 2000 3000 4000 5000



Holographic conductivity

Einstein -Maxwell model Lz (R—2A) —F,, F
Probe limit (fixed AdS): | $% = (mjda:zdm +d2?); A=-3

@ Gauge field A , < U(1) currentJ ,

Holographic correspondence:

o Graviton g ,, < energy-momentum tensor T,

Challenging question: how to study the boundary operators at finite temp erature?

The idea: consider AdS black holes instead of the reqular AdS gravity

S N
- 8tMGkp  4mry’ zli‘)’o
1 00 i Q% (r = =)
5% = —~ %" (900)d; (goo) '

Schwarzschild-AdS
black hole

r—r,




Detour: Black holes




Black holes

Schwarzschild, 1916

Static spherically symmetric netric,
solution of the Einstein equations
withT,, =0

ds® = —f(r)dt* + _f(lr) dr? + r2d6* + r? sin® 0d¢?
_ 2MG _ 1 __ rH
wher e f('r')—l - =1 -

Karl Schwarzschild
1873 - 1916

@ Coordinate singularity at the event horizon "=Tg

@ True singularity at r=20
@ Scwar zshild bl ack holes are non-rotating and unchar ged



Rotating black holes

Kerr, 1963

Stationary metric, a solution of the Einstein equat  ions
with non -zero angular momentum (rotating black hole)

58 !51! — a SlIl gg!g;
— p2

2
+ S (a dt — p2dp)? + %drz + p%df? Roy Patrik Kerr
where  p? = r? 4 a2 cos? 4,
pi=r?+a* A=r?—-2Mr+a’

and CL:J/M

l\')

Newman, 1965

Electrically charged generalization of the Kerr
solution

A=7r?—2Mr+a®+Q?




ReissnesNordstrom Black Holes

H. Reissner, 1916; G.Nordstrém, 1918

Charged static spherically symmetric black holes, the
Schwarzschild metric with

N(r)=1-—2M 4 @4g

r r2

@ Electrically (Q and magnetically (q)
charged black holes;

@ The event horizons are located at
’I“:|:=]\4:|:\/.7\42—Qz—g2

Q T,m/¢ 0. Energy density outside

the horizon is due to the Coulomb fields of
the charges Q and ¢

Gunnar Nordstrom

Ei nstein equati ons are sol ved t oget her
with Maxwel | field equations 1881 - 1923




Introducing temperature: AdS black holes

@ Hawking temperature is dual to the temperature of the system on the
boundary in d=3

@ Temperature of the black hole is proportional to the surface gravity, T=«/21r

@ Entropy of a black hole is proportional to surface area of event horizon

@ Dynamics in the bulk yields the boundary thermal field theory including
non-equilibrium processes (dissipation)

L? dz?
Planar AdS Schwarzschield: | ds® = = (—J”(Z)alt2 + —— + n“yda:“dw”)

f(2)

3
. - flz)=1- (i); A=-3
Planar AdS Reissner-Nordstrom ) 5y .
_ Thlt z Thll™ [ 2
S fley=1- (1+247) ()47 (2)
Classical solution Y h Y h

[A():Q(l—%)] T 1 (3_,,’le2> Chemical potential p = Q {fyzst ]

Amrp ~2

On the boundary: Ag is a source for Jy (charge density) I (Jo) ~ p/Th




Holographic conductivity

An electric field on the boundary:

In the bulk:

/
Conductivity: I o(w) = % ,AZ
e 1WA,

Re(o)
1o}
08}
06F
04F

02+

SeldEiRia el es

A, = (E/iw)e™?;

Ay = (E/iw)e™* + (J )z + ...

84,
ot

Eeiwt

045

0.6

02}

—02}




Holographic superconductivity

Bulk: 3+1 dim _F FU L1V —iA B2 + m2|ol2
Abeian Higgs model | 4 " + [V — 14, dl" +m9
2
Probe limit (fixed planar | 52 — _ ¢(;)dt2 + P 4 2dgde
AdS,,, Schwarzschield): f(z)\f() , ( ’r?z) .
z)=2=z — -2, =

@ Ansatz: [cb = |p| = d(2); A= w(z)50u]

@ Field equations

Low T (small r,) Hight T (larger,)
Effective mass is negative, Effective mass is positive,

there is a long-range scalar field (the hair) Solution for scalar field is trivial (no hair)

o Holographic correspondence: ¢ « (Q) = 1 <Te: (@) #0;
T>T.: (@)=0




Holographic phase transition

Q) There is a finite temperature continuous

_ symmetry breaking transition SEEOROEmpaaEesenEon
08~ with critical exponent 1/2
TR Q) o« (T, —T)/? as T — T,
H‘““--um Note: Semiclassical approximation
sl H‘“‘m to the gravity (weak curvature) means:
.x‘\.h‘. £ £ o1
m\. G lpl
| | | | On the boundary it should match the large
0.263 0.264 0.265 0266  Tg f N limit: 7
.,
[ G

@ As N decreases, the quantum gravitational effects become important;

@ Holographic superconductors are described not in terms of electrons and Cooper pairs but
in the framework of the order parameter of strongly coupled field theory defined on the
boundary of the AdS space; this charged operator condenses below a critical temperature.

@ In the AdS Abelian Higgs model the order parameter (Q) is a scalar (s-wave)




Holographic correspondence

Next step: extend the model by inclusion of the non-Abelian matter fields in AdS, space:

S =z / d4z\/—g { ——=(R—2A) - 61 F,, F* + (Du@)(D“@)—V(@)}

In the AdS , EYMH model the correspondence is as follows:
@ Scalar field ® « triplet of scalar operators (O

@ Gauge field A | < global SU(2) currentJ

- gauge symmetry in the bulk & conservation of the current JH

@ Graviton g ,, < energy-momentumtensor T

- classical scale invariance in the bulk & conservation of stress-energy tensor
* Fermion field < fermion operator Ow

<(9a>+.“ — & =% ((’)(a:))z(;%?0

Asymptotic matters! % = v* + -—
-

A very interesting case:  SU(2) symmetry on the boundary is explicitly broken
to Abelian group via asymptotic behavior of the Hig gs field:

0" J2 = £qpet?O°

U(1) symmetry remains unbroken




Detour: Einstein vs Yang-Mills

Pure gravity (attraction) I Pure Yang -Mills (attraction/repulsion) I

=

1 2
[L = Tx F, ]

Lichenrowitz: there are black holes

but there are no gravitational solitons, the
only globally regular, asymptotically flat,
static vacuum solution to the Einstein eqs
with finite energy is Minkowski space.

Deser, Coleman: Classical Yang-Mills
theory in 3+1 dim is scale invariant -
there is no soliton solutions

[Israel 's theorem: } Static Einstein-Maxwell black holes are spherically symmetric

Stationary black holes are completely characterized

[No-hair’ theorem:] by their mass M, charge Q and angular momentum J




Einstein-Yang-Mills model

S—= d*z\/—g{(R —2A) —Tr F,, F*}

R/J,V - iRgl_l,y ‘|‘ Ag'u,y — T/J,y; -D/J,F# — v'u,F# ‘|‘ [A[.HF#] — 0

Spherical symmetry:

Static asymptotically flat  solution % = Eiakz(w(r) — 1)

1

ds® = —c*(r)N(r)dt* + N{r)

dr® + r%(d6” + sin® 0d¢?)

0.5+

I I_I ~ The Bartnik -McKinnon solitons

@ Found numerically by the shooting method;

@ The solution is globally regular;

—-0.5

@ Analytic proof of existence of solutions of the differential
equation;

@ Gauge function w(r) has at least one zero, the solutions

are characterized by the number of nodes of the w(r)




Properties of the solutions

. . . _ e r . T G M
Dimensionless variables: | T = 7=a" ~ 15’ M =eMy/ 4z ~ Mp,

Mpl ~ 1/\/5; lpl ~ \/@

| @ Region I: Yang-Mills field is almost trivial, the metric
- Is close to Schwarzchild

| @ Region _II: Yang-Mills field corresponds to monopole
' the metric is almost Reissner—Nordstrom

1 @ Reqgion IIT: Yang-Mills field is almost trivial,

the metric is asymptotically Schwarzchild

All" Bartnik -McKinnon configurations are sphalerons

Galtsov, Volkov: There are EYM black hole
solutions with long-range non-abelian fields
(hairy black holes )

BM solutions are static asymptotically flat
gravitationally bound EYM sphaleron solutions ;

[§ the exterior of the limiting solution approaches
RN black hole




Generalised Bartnik -McKinnon solitons

m I 5.
Axial symmetry: ds® = —fdt + 7 (dr2 + r2d6’2) + ?rz sin? Odyp
(n) (n,k) (n,k)
K]_ T(p . Tr Te
p— (21 _ L _ —
A,dz ( - dr + (1 Kz)dO) = n sin 6 <K3 o + (1 — Ky) = ) dp ‘
8
7 L
6 L
5 L
@ k=1 @ k=2 o k=3 B : :
. |
N
0

0.11

01 }

0.09 |

0.08 |
—~ 0.07 }
. ¥ 006}
0.05 |
0.04 H
0.03 |
0.02 |,
0.01

(Kleihaus,Kunz, Shnir et al)



AdS Bartnik -McKinnon solitons

(Maison, Winstanley, Radu, Bjoraker, Hosotani et al)

@ Found numerically: There are continous families of solutions;
@ Boundary conditions on the gauge function w(r) can be relaxed

@ Gauge function w(r) may have no zero, the solutions possess a non-integer
magnetic charge
@ There are rotating and electrically charged BM solitons

@ There are stable configurations, both colored black holes and self-gravitating lumps

N

Fixed AdS space Asymptotically AdS space Limiting AdS




Bartnik -McKinnon solitons in asympotically AdS space

Axial symmetry in the bulk:

A m dr? 9 I 5 . o 9
ds® = — (1—§r2) dt2—|-7 (1—%7"2 + r2df ) —|—?'r sin“ Ody

- - - 2 -
Dimensionless variables: A— ;r—GA Two branches of the solutions

{ i /‘; B

C




Bartnik -McKinnon solitons . composite structure

Fixed AdS 7 ’ \)

i

1 —A&

0.8

Note: Yang-Mills interaction can be
both repulsive and attractive

@ Simplest k=1 spherically symmetric solution
has 2 components on top of each other:  MAP

@ k=1 solution possesses a non -
vanishing magnetic dipole moment

@ The constitutents of the k=1
solution are aligned: f '

& k solution consists of k MAPs

Throat + AdS » Lower branch: it has no flat space limit;
gauge interaction is repulsive—> as ¢ 1, G 1
]. » Critical point: configuration decays into componens

» Upper branch: the components are anti-aligned“
gauge interaction is attractive=—as ¢ |, G 1
» Along the loop constituents are separated

» Limit of very strong gravity: the space is split irto the internal
region and the outer region



Yang-Mills -Higgs Theory
d*z {Tr F,,F*+Tr (D,®)(D*®) — V(®)}

F,,=0,A,—0,A,+ie[A,, A
D,® = 0,® +ie[Ay, P
V(@) =X (8 - )2

“t Hooft-Polyakov static spherically symmetric solution . monopole

a

¢* = o= H(enr)

A% = eqgmn 5 (1 — K(enr))
M = - [ &zy/—gTp);
g = [dPz/—g Tt(*F°"D,,®);
Q= [ dPz\/—g Te(F°" D, ®);
J =2 [ dz\/—g Te(Fp, F™ + Fp,F* + D, ®D°®);

Monopole core: RC~mV'1



Non-BPS axially symmetric MAP

MA pair: magnetic dipole (Taubes, ,
Nahm, Ruber, Kleihaus,Kunz & Shnir) O ______________ -_—— O

K T(n) . T(n,m) T(n,m)
A, dxt = (Tldr + (1 — Kg)d@) —2——nsinf | K35 — + (1 — K4)-%5; de;




Multimonopoles, monopole chains and vortices

(P. Sutcliffe, N.Manton et al) (Kleihaus,Kunz, Shnir et al)



@ n=1,

Self-gravitating Dyons
m=1 |Branch of gravitating solutions links the monopole to the RN black hole

Dimensionless parameters of the model: a* = 4x* Gi?, *=e?/nq

AL
T

1.0 R e, s - 100 l
0.8F A 0.90 ]
y “ <
0.6r A " = &
Z ——— =05 \% \ K/ E 0.80 7
0.4 - a=10 \} %/ 3
- asl3 N N 0.70 1
0.2 - a=1.402 \ ' 0.63
— «=1.386 \ B=0 130 144 1.58
OO i I y . 060 L L L 1 1 L L
00 02 04 06 08 1.0 0.00.20.40.60.81.01.21.41.6
68
@ n=1, m=2,3.. Branch of gravitating MA-chains is linked to the BM solutions
- e
1 25 T
0.9¢ m=6
0.8f 5 m=5
0.7+ m=4
0.6 1.5F m=3 A
Sosf =
0.4 1z m=2_ .
0.3}
0.2 0.5
0.4}
. 1 1 1 1 1 1 0 !
% o1 02 03 04 05 06 07 °o o1 02 03 0405 0607



From gravitating Dyons to Bartnik -MacKinnon solutions

As gravity increases, the second branch of graviting axially symmetric n-MA
chain evolve toward composite system of a Bartnik-McKinnon solution of EYM
theory in the inner region and an outer n — 2 flat space solution of YMH theory.

n=1, m= n=1, m=4
1 , : . :
— 6=0 — 6=0
0.5¢ ?=0.001 - 0=m2 | 0.9 - - 6=m2
0.8}
0 L
0.7}
-0.5
BM 0.6
N1 2
> m=2, a=0 0.5 a°=0.001 A
FL15f 04
-2 ! 0.3
_25F 0.2
3t — 0.1
0
-3 2 3

0
log, (x)
n=1, m=6

0
loa. _(x)



Gravitating EYMH solitons: strong gravity limit

* Branch structure : Two distincts limits @ — 0O,

Lower branch is linked to the flat space solution — as G, af

« Critical point: configuration decays into component S

« Upper branch: — as G T, nd

« Limiting behavior at semi-Planck scales : splitting of the space into an
interior and an outer regions : BM sphaleron is confined (intermediate p);
+ Change of the geometry : a long throat is formed ;

« Conical singularity occurs in the limit of strong gravity o ooo




Non-Abelian Hairy Black Holes

(Lee, Weinberg, Breitenlohner, Forgacs, Maison, Hartmann, Kleihaus Kunz, Shnir...)

@ Black hole solutions are linked to
gravitating monopoles; there are m=1,n>1
axially symmetric black hole solutions with

a regular deformed S , horizon and non- o
trivial non-Abelian fields outside s
@ Neither Israel theorem nor the  “no-hair” 150
theorem cannot be generalized to theories 1
with nonabelian fields 2

Regular horizon (f(r,) = 0)
NO uniqueness

A globally regular multimonopole solution
corresponds to a family of black holes for

range of values of I,

@ Increasement of I, yields increasement
both of the mass and the Hawking
temperature




AdS SU(2) EYMH theory

(Maison, Breitenlocher, Shaposhnik, Moreno, Tong, B olognesi, Kunz, Radu, Shnir..)

V=0: Gaugefield A , < triplet of conserved currents Jﬁ

Scalar field @2 < scalar operators Q¢
BPS limit;

a

C
q)a(Z) —)na—|—?+
SU(2) global symmetry on the boundary is broken:

OMJy = e 'Q = const w= U(1)

@V <0: Abelian symmetry in the bulk < U(1) conserved

boundary current JMmassive gauge boson <
charged spin-1 operator
Scalar field @ & relevant scalar operator

o a Co G
®%(z) > n (n+zA_ + A, -|—)

e \/>0: Scalar field is irrelevant



Holographic AdS dyon

BPS Iimit: V=0

In the bulk we have:
@ d=3+1 Yang-Mills-Higgs theory;
& Schwarzschild-AdS black hole

2 dr?
=N
N(r)=1-

A = Bepix; + ... — LQFT(A) = A;J;
®* =n2+ & +... = Lorr(®) = @ O(z)

o = enn® (,u—l—%—l—...)

On the boundary: d=2+1 Abelian Quantum Field
Theory which undergoes a phase transition exhibiting
condensation below a critical temperature.

Abelian Higgs model at finite temperature

Holographic p-wave superconductors




0.8 -

0.6 -

H(r)

0.2 -

Dyonsin AdS space

a A=0 a A=-3

1

0.8 -

0.6
H(r)

0.4 |

] 0.2 |
. . . L
0.2 0.4 0.6 0.8 1 ¢} . .

. .
o 0.2 o.' 0.6 0.8

The Higgs field on the boundary becomes a constant
It does not qualify as a proper order parameter

K(r)

02 /V

P

The order parameter is the gauge function K



Some morenumerics..

0.75

0&fF—
T
K R
1 \\
04k
a L o - 1II r \
0.730 0.731 0.732 0.733 ¢




Physics in the bulk/boundary

Interpretation: Phase transition in the bulk at T=T,,

K Bulk: Boundary:
1
A = Begx; + ... L A) = A;J;
08 h"'nﬂ,ﬂ_% As T < chr : k k - QFT( )
S— Ag=Co+ & +... Lorr(®) =2 - O(z)
“H'“HM d=v+ 7% + ...
Ak HH.\‘-M\ A _ _ . B _
As T > T 2k~ o Jr=05=0
\“‘H ® = const O=0

IIII;I263 D.2In54 EI.EIES EI.EIEE T,;- £

@To the right of T, the conguration becomes trivial, SU(2) global symmetry is restored.

@To the left of T, the congurations, which correspond to v.e.v.'s in the dual field
theory are non-trivial.

@ There is a finite temperature continuous symmetry breaking transition.

@ The system condenses below a critical temperature T,

@ Fitting the curves one confirms that this is a second order phase transition:

K1 « (Ter — T)Y?; Hi « (Tor — T)




Summary and Outlook

@ AJS/CFT may become AdS/CondMatterTheory (no stringsttached)
@AdS/gauge duality is able to compute dynamical trasport properties
of strongly coupled systems at nonzero T.

@ On the gravity side: a 3 + 1 EYMH model in AdS-Scivarzschild
black hole background.

@ On the QFT side: a 2 + 1 Abelian Higgs Model

@ We constructed generalized BM AdS solutions

@ We obtained static axially symmetric dyonic solutios in fixed
AdS background

@ Dyonic black hole in AdS yields phase transition onite boundary
at critical temperature

@ Vortex condensation?

@ Is there is strongly coupled holographic supercondttor? P-wave?
D-wave?



Thank you for your attention!
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