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OUTLINE

Introduction
The New Effective Interactions USDA and USDB




The production mechanism and site for the long-lived
radioactive isotope 2°Al has been of interest since the first
indications of %Al enrichment in meteoritic inclusions was
observed. Understanding its origin would serve as a unique




Many levels in 2°Si (mirror of 2°Mg) are not well known, thus
requiring theoretical input. The calculated gamma-decay
lifetimes and 2°Al to 2°Si spectroscopic factors together with
experimental information on the levels of excited states are
used to determine the %°A4l(p,y)?°Si reaction rates. A theoretical
error on this rate is based on the use of different interactions.

The total rp-process reaction rate depends on the partial
gamma decay widths of 2Si levels above the proton-
emission threshold as well as the proton decay widths to
states in 2°Al. We have calculated this for the USDA and
USDB interactions, as well as with certain approximations
for the gamma decay widths.
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With neutron-rich nuclei and previously omitted
nuclel we used 608 levels in 77 nuclel

 Minimize deviations (chi-squared)between theor.
and exp. energies in several iterations

For USDA, 30 well-determined LC’s

For USDB, 56 well-determined LC’s
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Generally good agreement with experiment for all
sd-shell observables calculated with the effective

Interactions USDA and USDB [Richter,Mkhize, Brown,
Phys. Rev. C 78, 064302 (2008) ]

For level energies USDB provided a superior agreement

(130 keV rms fit deviations). BothUSDB and USDA gave

Improved binding energies for neutron-rich nuclei
compared to USD .
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Figure 6. Relative contributions to the reaction
rates for x = -E../(KT) with T9 = 10. Resonant
reaction rate a ZX; wy;; e Eres/kT)
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Our new method for determining energies of states in
26Sj , based on the IMME, with experimental energies
for the T = 1 analogue states and the theoretical c-
coefficients, should be extended to other cases in the sd
shell.

For the gamma decay lifetime calculations it is an
adequate approximation to use the theoretical lifetimes
of the mirror nucleus *°Mg.

The use of different interactions and approximations
gives an indication of the theoretical error in the rates.



