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Several reasons to be interested in CFTs in d > 4.

e Mothers of interesting theories in d < 4
[Gaiotto 09, Alday;

Gaiotto, Tachikawa ’09...]

® Harder to define.
e.g. Tr(F},)? relevant in d > 4. Similar problem to \/—¢gR in d > 2



® They might allow us to get a handle on the
elusive (2,0) theory living on M3-brane stacks

e number of degrees of freedom ~ N*

crucial features:
e ‘chiral tensors’: b,,,, such that h,,,, is self-dual



® They might allow us to get a handle on the
elusive (2,0) theory living on M3-brane stacks

e number of degrees of freedom ~ N*

crucial features:
e ‘chiral tensors’: b,,,, such that h,,,, is self-dual

This talk: Holographic approach
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Plan

e Classification of AdS7 solutions in type II sugra ‘

* infinitely many; analytical

e Their CFTg duals: NS5-D6-D8 brane constructions

* natural structure: linear quiver

® in string theory, they appear from NS5-D6-D8 brane constructions

*Match of Weyl anomaly!



AdS7 classification



AdS7 classification

e AdS; x My in 11d sugra:



AdS7 classification

e AdS7 x M, in 11d sugra: cone over M, should have
reduced holonomy

':> My = S*/T'spE



AdS7 classification

e AdS; x M, in 11d sugra: cone over M, should have
reduced holonomy

':> My = S*/T'spE

o AdS; x Mj3 in type II: ‘pure spinor’ methods [Apruzzi, Fazzi, Rosa, AT 13]
originally applied to AdS, x Mg in type 11 [Grafia, Minasian, Petrini, AT 05}
later extended to any 10d solution in type 11 [AT 11

we will later see a similar classification for AdSs x My in ITA  [Apruzzi, Fazzi, Passias, AT "15]
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¢IIB: no solutions! this doesn’t include
F-theory

*ITA: internal M3 is locally S*-fibration over interval
[no Ansatz necessary}  ds® ~ eQA(T)dSidS7 + dr? 4+ v*(r)ds%s

This S realizes
Fluxes: Fy, Fy ~volg2, H ~ dr A volg: the SU(2) R-symmetry
of a (1,0) 6d theory:

A(r), ¢(r), v(r) determined by ODEs

solved at first numer 1cally [Apruzzi, Fazzi, Rosa, AT 13}

then analytically with the help of AdS4 and AdSs
[Rota, AT 15} {Apruzzi, Fazzi, Passias, AT 15}
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local solutions also in [Bldbick, Danielsson, Junghans, Van Riet, Wrase, Zagermann "11}
susy-breaking? in {Junghans, Schmidt, Zagermann "14}
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o [y # 0: many new solutions

we can make
one of the poles regular:

ds2, — mDs dy’ 1 (A9 (+2)*2 5 9
Ms3 Fo \ 4y/y+2(1—y) ' 3 8—4dy—y? S?
o ¥,

D6 stack ' reg. point

local solutions also in [Bldbick, Danielsson, Junghans, Van Riet, Wrase, Zagermann "11}
susy-breaking? in {Junghans, Schmidt, Zagermann "14}
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more generally we can have
two unequal D6 stacks

=N D6s

N
4

(5] D6s

or also an O6 and a D6 stack

these solutions are also analytic, but a bit more complicated.
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we can also
include DS8’s: | D8-D6 stack

-
-
- -
--

actually, ‘magnetized’ D8’s

|
D8-D6 bound states

metric: gluing of two pieces of earlier metric

intuitively: D8’s don’t slip oft
because of electric attraction

stacks with opﬁ.osite D6 charge

metric: gluing of two pieces of metric in prev. slide
+ central region from two slides ago



and so on...
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Holographic duals

Natural class: linear quivers At each node, np = 2n,

[Hanany, Zaffaroni ’96,
Brunner, Karch ’96...1

7,8.9

D6’s
DS8’s 6

LD (¢pjp1 — ¢;)TrE? ¢; = x¥ positions of NSs's

coincident NSgs = strong coupling point; CET?
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Hanany-Witten
brane-creation effect

Until
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brane supergravity solution not known, but...

Conjecture: near-horizon limit gives our AdS7 solutions

N = # NSs's # D6's ending on a D8

' N =17
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flux integer [ wm, 2 D6 charge of the D8
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These theories can be labeled by two Young diagrams

[combinatorics well-known 07070707070707010 101070707000

in other dimensions}

same function (z)
appearing in the metric

Oranks
Opositiorn
jumps in Young diagrams
= positions of D8-branes
YL YR

()53/2(—&)1/2 5

+ aa—ar 055
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Some notable examples:

reduction of

AdS7 X S4/Zk

an orbifold of
the (2,0) theory

N
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Anomaly matCh [Cremonesi, AT, to appearl

[Intriligator '14, Ohmori, Shimizu,

® Cancel gauge anomalies [Green,Schwarz, West’86, Sagnotti ’92} - ;
gaug & Tachikawa, Yonekura 14}

e Compute global SU(2)r and gravitational anomaly

] v
conformal anomaly a [Cordova, Dumitrescu, Intriligator ’15]

(T'f') ~ a Euler+ Weyl comb.

C f SU(N
artan o ( ) .ranks of gauge groups
. . 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

‘sA ¢
4

192 —1 :
oa =12 )i ; Ci; rirj+ subleading

¢
(# gauge groups)”

This reproduces the famous cubic scaling.
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Example:

T-O—@O- & ri =k(1,1,...,1)

—1 k2 3 “Freudenthal-de Vries
Zz’,j Cz'j rir; = 13 (N° = N)

12 strange formula”

a4 = 1_76 L2 3 4 [Ohmori, Shimizu, Tachikawa, Yonekura 14}

It matches with holographic computation:

R5
Q4 — —AdS [Henningson, Skenderis *98}
C;N,7d
in ITA _ 3 5A—2¢
0= 55 fM3 e vols

[string frame]

&
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Another example:

- -OF

> Citriry = g NAN? = 1) (N2 = 1) ~ £eN° 4 ..

[because k = NN in this casel

in I[TA 3 Ao TN
[string framel 4= f Mg € ®voly = =N+ \/
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A more elaborate example:

1+~ DO OO -0

< >

N

—1
an~ 23 Cp frz-rj+...:1—76k2(N3—4J\£k2+%k3)+...

~. -

all la}ge: overall degree 3in N, k

in ITA q— _3 fMg ePA=20y0], — 162 (NB _ANK2 + %6/@3) + ...

[string frame]l o6 /
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We have proven that this always works

ranks 4 )

>

Heuristic argument:

o SA_20 102 g
°®a =z fM3 e vol; = > fa Q
J interpolated by ¢/(2)’

appearing in the metric!

¢ On the other hand: Cartan is “discrete double derivative”

L Cij = 20i5 — 0i—1,5 = Oit1

192 —1 192 -
e hencea ~ 2= > r,Cy; 'y r o fCVOé /



Conclusions & Extensions

e Classification of type II AdS7 solutions

infinitely many new ones!

e Dual field theories: strong coupling points in linear U(k) quivers

_. NSs-branes N
g
N
T PL PR %
~

*._pattern of D6’s
ending on D8’s

R
-
R
7S



* There are also extensions involving exceptional gauge groups

example:

[‘f ractional M5 -br anes’] [del Zotto, Heckman, AT, Vafa '14}

* One can also ‘compactify’ AdS-
AdS5 X 22
so oo new CEFT4, CFT3...

[Apruzzi, Fazzi, Passias, AT '15; Rota, AT ’15]
P ) ) AdS4 X 23

in fact there is a
consistent truncation to 7d

[Passias, Rota, AT ’15}

these are also interesting
flux compactifications



Backup Slides
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SO [Apruzzi, Fazzi, Rosa, AT '13;
(zeneralization: pmé;oi‘fi‘ AT SIZ} ;

e numbers /V; of D8's, and their D6 charges p;

o fluxinteger N = = [ H
subject to constraints:

positive and growing for Fy > 0 . .
fi , , --*%_.-» Young diagrams pr,, pr
negative and growing for fy < 0
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ST [Apruzzi, Fazzi, Rosa, AT '13;
(zeneralization: pruz(iioifj,l AT SIZ} ;

e numbers /V; of D8's, and their D6 charges p;

o fluxinteger N = = [ H
subject to constraints:

positive and growing for Fy > 0 . .
i , , --*1_.=» Young diagrams pr,, pr
negative and growing for fy < 0

o L

o N = || +|p1]
hA

bor(‘iéring u
Fo = 0 region. oL

PR

I
||
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Consistent truncations.

For any AdS7 solution in ITA there is a consistent
truncation to ‘minimal gauged 7d sugra’

.’
"‘ 4 ~~
,° " N
A Y
P
’¢ 4 .
o’ " +
P )
Vi | )
q [ ] |
[ 1 , P |
] 1 Y | o o
1} 1 [
‘ | [ |
“ 1} ’
N ] ’
LS ‘ ’
§~ s ¢
~ . Y 4
§~ . P
§~ L 3 P
A A b

7d minimal gauged sugra

fields: gg,,), AL, X

[Passias, Rota, AT ’15}

24 7.2 2 v? 2A 7.2
e“*dsz + dr + Tz € dsgs

scalar X = an internal 'distortion'

vacuum:
2A 7.2 2 2 7.2
e dsAdS7 + dr® +v°dsgs
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Many solutions that one can lift:

actually done earlier:
[Apruzzi, Fazzi, Passias, AT 15;
Rota, AT 15}

e AdSs x X5, AdS4 x X3 solutions
dual to CFTg’s and CFT'4’s

e RG flows from AdS; to AdSs x Y5 and AdS, x X3

e AdS; to AdS; x X4 solutions

e non-susy AdS; solution
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If you’re curious about the
analytic expressions:

e All is determined by a single function 5(y) where (%2,5’ )/ = I
ds? = 2, /—% {alsidS7 = 1—165—£3dy2 + wﬁ_—/jﬂ,dszsg} [it’s easy to solvel

e 3 has single zero = regular point; double zero = D6 stack
Fy = 0, two D6 stacks 3 o< (y? — y3)?

examples: Fy # 0, 0one D6 stack 3 o< (y — yo)(y + 2y0)?

Fy # 0, most general: 5 (\/§ — 6)2 (3) + 6+/7 + 6by — 72)2

§ = 2b, (i—l) + 36
Yo
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More general CFTo6 from F-theory

So far we have seen chains of SU(N) gauge groups

M-theor
4 R X R* /7. sing.

—O0-0- - —O—

=0 == ,

N 0'11%,(}
I1B

Y
Sex - oE =
N »

simplest example:

\D;’s
e [-theory allows to include more general gauge groups

* The D8’s should be dual in F-theory to an object called “I-brane”
[del Zotto, Heckman, AT, Vafa 141
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e First generalization: SO/Sp gauge groups

known ITA phenomenon:

an NS5 can ‘fractionate’ on an O6 [Evans Johnson,Shapere *o7]
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for a nice alternative explanation
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