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FRQH�RYHU M4 VKRXOG�KDYH
UHGXFHG�KRORQRP\ M4 = S4/Γ���

• $G67 � M4 LQ 11G�VXJUD�

[Apruzzi, Fazzi, Rosa, AT ’13]

[Graña, Minasian, Petrini, AT ’05]

• $G67 � M3 LQ�W\SH�,,��µSXUH�VSLQRU¶�PHWKRGV
RULJLQDOO\�DSSOLHG�WR�$G64 � M6 LQ�W\SH�,,

later extended to any 10d solution in type II [AT ’11]

ZH�ZLOO�ODWHU�VHH�D�VLPLODU�FODVVL¿FDWLRQ�IRU�$G65 � M5 LQ�,,$ [Apruzzi, Fazzi, Passias, AT ’15]
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Fluxes: F0, F2 � YROS2 , H � dr � YROS2

ds2 � e2A(r)ds2
$G6� + dr2 + v2(r)ds2
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solved at first numerically [Apruzzi, Fazzi, Rosa, AT ’13] 

A(r)� �(r)� v(r) GHWHUPLQHG�E\�2'(V

then analytically with the help of AdS4 and AdS5
 [Rota, AT ’15] [Apruzzi, Fazzi, Passias, AT ’15] 
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D-brane engineering:
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Brunner, Karch ’96…]

L � (�i+1 � �i)7UF 2 �i = x6 SRVLWLRQV�RI�16�
V

coincident NS5s = strong coupling point; CFT?
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D6 charge of the D8

Conjecture: near-horizon limit gives our AdS7 solutions
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P
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Figure 5: A theory that is dual to the massless solution in the holographic limit. From the

top left, anticlockwise, we show: the Young diagrams, the quiver, a sketch of the internal space

M3, and the brane configuration; cf. the general case in figures 2(c), 2(a), 3(c), 3(b). The brane

picture is shown in the version that would follow from applying the general correspondence

reviewed in section 2.2, as well as in an equivalent version, using the fact that a stack of

D8-branes on each of which only one D6 terminates is equivalent to having semi-infinite D6’s

[29]. Also, taking the general correspondence literally, one would see in the gravity solution

two D8 stacks with charges ±1, but in the holographic limit these become so small as to be

indistinguishable from a D6 and an anti-D6 stack.

We will now evaluate these terms in general. Let us start from the term

X

i,j

C�1
ij rirj , (3.12)

which will turn out to give the leading contribution, like in the example we just ex-

amined. The first thing we need is an expression for C�1. This is readily obtained by

writing C = �@@⇤; @ and @⇤ are the discrete derivative operators introduced after (2.1),

which are easy to invert in terms of partial sum operators. This gives

C�1
ij =

1

N

(
i(N � j) , i  j ,

j(N � i) , i � j .
(3.13)

20
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This reproduces the famous cubic scaling.
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Conclusions & Extensions

N

TN
ρ�,ρ�

ρ� ρ�

NS5-branes

pattern of D6’s 
ending on D8’s

•Classification of type II AdS7 solutions 

• 'XDO�¿HOG�WKHRULHV� VWURQJ�FRXSOLQJ�SRLQWV�LQ�OLQHDU 8(k) TXLYHUV

infinitely many new ones!



•There are also extensions involving exceptional gauge groups 

6S(1) G2 F4 G2 6S(1)E8 E8

[‘fractional M5-branes’] [del Zotto, Heckman, AT, Vafa ’14]

example:

• One can also ‘compactify’ $G67
$G65 � �2

$G64 � �3

so ∞ new CFT4, CFT3…

these are also interesting 
flux compactifications

in fact there is a 
consistent truncation to 7d

[Apruzzi, Fazzi, Passias, AT ’15; Rota, AT ’15]

[Passias, Rota, AT ’15]
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top left, anticlockwise, we show: the Young diagrams, the quiver, a sketch of the internal space

M3, and the brane configuration; cf. the general case in figures 2(c), 2(a), 3(c), 3(b). The brane

picture is shown in the version that would follow from applying the general correspondence

reviewed in section 2.2, as well as in an equivalent version, using the fact that a stack of

D8-branes on each of which only one D6 terminates is equivalent to having semi-infinite D6’s

[29]. Also, taking the general correspondence literally, one would see in the gravity solution

two D8 stacks with charges ±1, but in the holographic limit these become so small as to be

indistinguishable from a D6 and an anti-D6 stack.

We will now evaluate these terms in general. Let us start from the term
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which will turn out to give the leading contribution, like in the example we just ex-
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an O6 singularity. The second generalization will involve
D8-branes. These were described numerically in [1, 2],
but we will now be able to give analytic expressions. It
would also be possible to combine D6, D8, and O6 into
even more general solutions.

The first generalization involves finding a more general
� that solves (8) for F

0

6= 0. This can be written as

� =
y3
0

b3
2

F
0

⇣p
ŷ � 6

⌘
2

⇣
ŷ + 6

p
ŷ + 6b

2

� 72
⌘
2

, (13)

where

ŷ ⌘ 2b
2

✓
y

y
0

� 1

◆
+ 36 . (14)

The parameter b
2

is also equal to F0
y0
�
2

, where �
2

is half
the second derivative of � in y = y

0

.

• If b
2

< 12, � has two double zeros, so the so-
lution corresponds to two D6 stacks, one at ŷ =p
�3 +

p
81� 6b

2

, one at ŷ = 36.

• If b
2

> 12, the solution corresponds to a D6 stack
at one pole ŷ = 0 and an O6 singularity at ŷ = 36.

• If b
2

= 12, � simplifies to
y3
0

1728F0
ŷ(ŷ � 36)2, which

is (11) up to coordinate change; so this case corre-
sponds to a single D6 stack at ŷ = 36.

The second generalization consists in introducing D8-
branes. These manifest themselves as loci across which
F
0

(and hence (8)) can jump. Supersymmetry requires
them to wrap the round S2 in (2) at a fixed r = r

D8

;
this is indeed the only way they can preserve the SU(2)
R-symmetry. The supergravity solutions consist in glu-
ing together solutions of the type (11), (13), or (10); the
only non-trivial task is fixing the parameters of those
solutions, and the positions of the D8’s, using flux quan-
tization. We will do so for an example with one D8 and
one example with two D8’s; here (13) will not be needed,
but we expect it to become relevant for higher numbers
of D8’s.

A D8 can also have D6 charge µ smeared on its world-
volume; this is the Chern class of a gauge bundle, and
as such it is an integer. D8’s with the same µ will be
stabilized by supersymmetry on top of each other. In
such a situation, the flux integers of F

0

and F
2

before
and after the D8 stack, (n

0

, n
2

) and (n0
0

, n0
2

), are related
to the number of branes in the stack and their charge by

n
D8

= n0
0

�n
0

and µ =
n0
2�n2

n0
0�n0

. The position is then fixed

by the formula [1, 2]

q|r=rD8 =
n0
2

n
0

� n
2

n0
0

2(n0
0

� n
0

)
=

1

2
(�n

2

+µn
0

) =
1

2
(�n0

2

+µn0
0

) ,

(15)
where q was given in (8). So we see that in the y coor-
dinate the position of the D8-branes goes quadratically

with µ. In fact, q itself has a nice interpretation: from
its definition (8), and from (9), (2) we see

q =
1

4
veA�� = e��radius(S2) . (16)

The simplest possibility is to have one D8 stack, of
charge µ. This is done by gluing two copies of (7). Con-
cretely, the function � reads

� =

8
>><

>>:

8

F
0

(y � y
0

)(y + 2y
0

)2 , y
0

< y < y
D8

;

8

F 0
0

(y � y0
0

)(y + 2y0
0

)2 , y
D8

< y < y0
0

;
(17)

with y
0

< 0, y0
0

> 0. We need to impose flux quantiza-
tion, (15), and continuity of � and its derivative (which,
via (9), guarantees continuity of A, �, and of the metric).
This leads to

F 0
0

= F
0

✓
1� N

µ

◆
, y

D8

= 3F
0

⇡2(N � 2µ)(N � µ) ,

y
0

= �3

2
F
0

⇡2(N2 � µ2) , y0
0

=
3

2
F
0

⇡2(N � µ)(2N � µ) .

(18)

We see now that � has a single zero at both endpoints y
0

and y0
0

. So this solution is regular, except of course for the
e↵ect of the D8 backreaction; this causes discontinuities
in the first derivatives of A, � and the metric, as any
domain wall in general relativity should do.
The next possibility is to have two D8 stacks. As in

[1, 2], we assume for simplicity that the solution is sym-
metric under y ! �y, so that the two endpoints are at
y
0

< 0 and �y
0

, and the two D8 stacks, of D6 charge
µ and �µ, are located at y

D8

< 0 and �y
D8

. There
are three regions: i) For y

0

< y < y
D8

, F
0

> 0; � is
as in (11); ii) For y

D8

< y < �y
D8

, F
0

= 0, and �

is as in (10), namely � = 4

k2

�
y2 � ( 9

32

R3)2
�
2

; iii) For
�y

D8

< y < �y
0

, the Romans mass is F 0
0

= �F
0

< 0; �
is again as in (11), but now with y

0

! �y
0

, F
0

! �F
0

.
Again in this way we avoid singularities, except for the
discontinuities in the first derivatives induced by the two
D8 stacks. This solution, and its brane interpretation, is
showed in figure 2.
Using flux quantization and (15) we can fix the param-

eters as

y
0

= �9

4
k⇡(N � µ) , y

D8

= �9

4
k⇡(N � 2µ) ,

R6 =
64

3
k2⇡2(3N2 � 4µ2) .

(19)

This solution only exists for N � 2µ, in agreement with
a bound in [2].
All these analytic solutions now allow us to obtain

some information about the field theory duals. As we
mentioned above, the six-dimensional (1, 0) field theories
should be dual to the theories described by NS5–D6–D8

F0 �= 0� PRVW�JHQHUDO� � �
��

ŷ � 6
�2 �

ŷ + 6
�

ŷ + 6b2 � 72
�2

F0 = 0� WZR�'��VWDFNV � � (y2 � y2
0)2
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More general CFT6 from F-theory
6R�IDU�ZH�KDYH�VHHQ�FKDLQV�RI SU(N) JDXJH�JURXSV

. . .k kkk k

R � R4/Zk VLQJ�
. . .

M-theory

. . .

IIA

simplest example:

�= . . .
. . .

D7’s

IIB

lift

T-duality

• F-theory allows to include more general gauge groups 
• The D8’s should be dual in F-theory to an object called “T-brane”

[del Zotto, Heckman, AT, Vafa ’14]
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known IIA phenomenon:
an NS5 can ‘fractionate’ on an O6

D6s

2��

NS5

[Evans,Johnson,Shapere ’97]
[Elitzur,Giveon,

 Kutasov, Tsabar ’98]

��(2n+ 8) ��(n) ��(2n+ 8)

In F-theory this is 
reproduced geometrically:

I�
p

¿EUH�GHJ�

“blow-up”

I�
p I�

p

IQV
2p

• )LUVW�JHQHUDOL]DWLRQ� 62/6S JDXJH�JURXSV
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• There is also an analogue for exceptional gauge groups

now we need 
several blowups…

E8 E8

…

2

two tensors
(no gauge group)=

1

E8 = “E-string”
(no gauge group)

E8 ÀDYRU�V\PPHWU\

F4 G2

1

=
DJDLQ�³(ĥVWULQJ´

ZKHUH F4 � G2 � E8

KDV�EHHQ JDXJHG

this pattern also appeared in
[Berhadsky, Johansen ’96]
[Aspinwall, Morrison ’97]
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6S(1) G2 F4 G2 6S(1)E8 E8

1 2 1 1 12

In M-theory:
M5

R � R4/�E8 VLQJ�

)LQDO�UHVXOW� WKH (E8, E8) WKHRU\

Conjecture: 12 fractional M5’s

a ‘discrete flux’ is created whenever
 a fractional M5 is crossed

for a nice alternative explanation
[Ohmori, Shimizu, Tachikawa, Yonekura ’15]


