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Dirae’s equation for the electron in Kerr geometry is separated; and the
general solution is expressed as a superposition of solutions derived from
a purely radial and a purely angular equation.

1. INTRODUCTION

Teukolsky’s (1972) separation of the variables of the equations governing the
electromagnetic, the gravitational, and the two component neutrino-field perturba-
tions of a Kerr black hole has been central to much of the later developments. But
the lack of a similar separation of the variables of Dirac’s equation for the electron
has been an obstacle to progress along many desired directions (particularly, for the
treatment of massive fields in the context of Hawking’s (1975) quantal process of
the evaporation of black holes). In this short paper, we shall show that Dirac’s
equation can also be separated and the solution expressed in terms of certain radial

and angular functions satisfying d pled equations; in quence problems
associated with an electron in the vicinity of Kerr black holes become amenable to
treatment.
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Spin-manifolds

M is a m = r + s dimensional manifold (connected, paracompact)
7 is a symmetric tensor of signature (r, s) (Minkowski metric...)
C(n) is the Clifford Algebra associated with 7

{72}, a=0,...,m—1is a representation of C(n) (Dirac matrices):

YaVb + VbYa = 2Mapl

E, = e/0, is a moving spin frame
orthonormal w.r. to the metric tensor on M defined by

_ aa b
Buv = €,1ab€,,

g is determined by e* and 7
el are determined by g and 7
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Dirac equation with external fields

i (0, — gV, ) — Vip = i) flat space - Cartesian coordinates
iV 1) — Vb = uap  spin manifold M
where

V;L'QZJ ﬂ/} + 7 ru D{ERD) (0
is the covariant derivative of the spinor 1
(Fuw = 0, Vi, — 0, V), electro-magnetic force, g = charge)
b _ b
M = e(Tue™ + 0,e)

is the spin connection
V is the matrix function of the external fields: scalar, pseudoscalar, vector
potentials

G.Rastelli (DM Torino) Separation of Dirac equation Dubna, November 2015

5/ 44



Dirac equation in 2D

We choose the Dirac representation of the Clifford algebra

0 __ 1 0 1_ 0 —k _ _ 0 77]/(
V= 0 —1)° V= k 0 y Y =771 = —77k 0 .
where k = \/—n (n = £1), both Riemannian and pseudo-Riemannian cases

V is a combination of a electro-magnetic term gy*V,,, a scalar term VI and a
pseudoscalar term V-~

20 a0 1
ieg  —ikej iey lke1 R
{(ike? —ie8> O + <ike11 —ies Oy + C| v =,

C = —ebet FOI% —qel Vv — VI — V7,

system of 2 first-order PDEs
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Separation of variables for scalar equations

(M,,g), A =V -V = V? Laplace-Beltrami operator

Helmholtz equation

AY =

Multiplicatively Separated (MS) solutions: ¥ = v1(q) - ... - ¥,(q")

Theorem (Stéckel-Eisenhart...)

Helmholtz equation is MS in orthogonal coordinates <>

i) there exist n (including g) pointwise independent Killing tensors (K)
simultaneously diagonalized and in involution (i.e {K/p;p;, K!"pip,m} = 0)
ii) the Ricci tensor is simultaneously diagonalized with the (K,) (Robertson
condition)
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The eigenvectors (eigenforms) of the (K,) determine the separable coordinates
(St3ckel coordinates)

Ay = pp MS = [K,, A] =0

Schrodinger MS < Helmholtz MS and V = g/¢;(q') <+ d(K,dV) = 0 (V Stackel
multiplier)

A+ V = up MS < [K,, A] =0

W, = K.dV.
The coordinates are independent from p <+ K, are independent from p
Eigenvalues of the K, are separation constants: K1) = 1)

«O>» «F>r» «E» < PENES



Example: some separable variables in M2, real and complex

(% %) /// \\ ><

2 level
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Complex (orthogonal) separable variables

2

N4
e NY

Ve (!
2 —1+z =0 /‘/\i/ \\\\
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complex variable z
through this point
z, Z
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Example: separable coordinates in M": Horizons,
classification

Horizons : where eigenvectors (eigenforms) coincide. Null hypersurfaces.
X

Fig. 3. (B..d), horizons Fig. 1. (B.1.0), horizons

Examples in M2, M?® (F. Hinterleitner, Sitzungsber. Abt. |1 (1998) 207: 133-171)

Classification : in M2 12 coordinate systems, in M® many more (according to
different criteria, up to 89 in Hinterleitner, less in McLenaghan et al. )
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Dirac sep. — Helmholtz sep.

(Dirac)?p) = Al + lower-order terms

If on a manifold the Dirac equation has multiplicatively separated solutions in
orthogonal coordinates, then also the Helmholtz equation does

The Dirac equation is orthogonally separable only in Stackel coordinates J

Dirac equation as eigenvalue-type equation preserves the analogy with Helmholtz J
equation

Separation constants are constants of the motion <> are eigenvalues of symmetry
operators: [L,D] =0, L) = vi)

L independent from > EX or E independent from p <+ coordinates
independent from p

wa

[m] = = =
Separation of Dirac equation Dubna, November 2015 12 / 44

G.Rastelli (DM Torino)



Separation of variables theory for the Dirac’s equation

@ Shapovalov-Miller (1973, 1988) theory: first-order symmetry operators
@ Fels and Kamran (1989): examples of separation associated only to
second-order symmetry operators.
@ we build eigenvalue-type operators L (first and second-order) using EX or EY
so that Ly = vi.
Our model of separation for Dirac’s equation, including second-order operators,
enhances analogies with Helmholtz and Schrodinger separation
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Multiplicative separation of eigenvalue-type PDE systems

Let (x,y) a (local) coordinate system on a two dimensional manifold and

w — (¢1(X7Y)) .
/(/)2()(7)/)
Let D the operator defined by

o A1 A2 Bl Bz Cl C2
o= (5 &) (B B)or (8 &)

where A;, B; and C; are functions of (x,y), such that

A30x1P1 + AgOxthr + Ba0yth1 + BalOythn + Gy + Carho

Dy — (A18x¢1 + A20x92 + B10yy1 + Ba0ythn + Cripr + C2?/J2) _
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Let u # 0 a real or complex number, we consider the equation
Dy — i) = 0.

If we assume multiplicative separation for v, i.e.

then the equation DY — py = 0 becomes

A1a1by + Aganby + Braiby + Baazby + (Cy — p)arby + Crapby = 0
Azaib1 + Asarby + Bzaiby + Baasby + Gzairhy + (G4 — p)asby =0

hence, we define separability of D as follows:
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Naive separation

The operator D is separate in (x, y) if there exist nonzero functions R;(x, y)a,bs

such that the above equations can be written as:

{Rla,bs(Ef +E) =

0
Roarby(Ex + EY) =0

where EX(x, a;, 4;), E (v, b;, b)).

1 1

provide the separation constants v;.
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1- Three kinds of separation

Separation ansatz

l. dal 7& an and bl # b2.
Il. a3 = a, = a and by # by (or vice-versa).

IIl. 3 = a, = a and by = cb, = b (c constant).

Not " constrained separation”: setting a; = e€~, a; = x2—1,.
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Type |

R; = 1. — one at least of a;bs in i — th equation must be equal to i (u is
arbitrary). Then, separation is achieved by

1
arb 0
IOm 1 Dw
apbg

where one of /, mis 1 and one of p, g is 2. All the possible separation schemes are

(1,1,1,2) (1,1,2,1) (1,1,2,2)
(1,2,1,2) (1,2,2,1) (1,2,2,2)
(2,1,1,2) (2,1,2,1) (2,1,2,2)

The separation conditions (D — p1);j1) = a;bm(EX + E}) impose restrictions on
functions A;, B; and C;

therefore the possible separate forms of D are
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Separation schemes
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Exchanging x and y some of the previous operators coincide: D; = Dy, D4 = Dy,

Ds = D;, Dg = Dg and D3 = Ds.
By introducing the operator

()
()= ()

such that

D;v is of the same form as JDgJ), then D; and Dg are equivalent.

Four distinct classes: Dy, D3, D4 and Ds.
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Separated equations associated with no operators

The class Dy:
Let us consider D17 — p = 0, assuming here and in the following that u # 0,
the first component can be separated as

Al(X)a:1 + C11(X)81 — pa; = ra
Bi(y)br + Giao(y)by = —v1 by
or

Bl()’)bl + Cia(y)br — pby = —v1by

according to alternative grouping of p with terms in x or y. The second
component reads

{Al(X)él + C11(X)31 = 1ja;

A4(X)é2 + C4(X)82 — pas = 1ha
Bs(y)byr + Gi(y)b1 = —1v2bo
where 17 and 15 are the separation constants.

Separated equations can be decoupled by integrating a; and b; from the first two

and substituting the results in the last. The solutions a;, b; are in all cases given
by first-order ODE's.
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By using the only terms independent of y and assuming v; = v, one can try to
build an operator L. However, this is impossible under the assumption of
independence among a; and b;. The same for higher-order operators, when we can
assume v1 # v;. It follows that no eigenvalue-operator is associated with the Dy
separation scheme.
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Separated equations associated with first-order operators
The class Ds.

By considering equation D3t — puw = 0 we obtain the following four systems of
separation equations, according to the possible different groupings of p:

Ai(x)ar + Cui(x)ar — pay = v1a1
Bi(y)b1 + Cia(y)by = —v1by

Ai(x)ar + Gii(x)ar = riaq
Bi(y)b1 + Cia(y)b1 — pby = —11by

A4(x)é2 + C41(X)22 — [ax = 11ay
Ba(y)bo + Caz(y) b2 = —12by

A4(x)z'?2 + C41(X)32 = pay
By(y)b2 + Caz(y)bo — by = —1v2by

All equations are decoupled in a;, b; and solutions are always given by first-order
ODE's.
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By putting 11 = v, = v we can obtain from the previous systems the following
couples of equations respectively, suitable for the construction of operators:

(Blay + C12)b1 = —-vh
(Bs0y + Ca2)bo = —vby

(Blay + C12)b1 = —vb;
(A48X + C41)a2 =Vvap

(A10x + Gi1)ar = vay
(Bay + Ca2)bo = —vby

(A18X + C11)31 = vay
(As0x + Gir)ar = vap
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The corresponding operators of the form Ly = v are then respectively

L, — — Blay + Cio 0

e 0 Bidy + Car
L, — —Blay — C12 0

? 0 Asds + Cay
L. — A0, + Cin 0

3 0 —B48, — Cyo

L, — A0y + (11 0

T 0 A0y + Cyq

An easy computation shows that all these operators commute with D3 and
between themselves when applied to some generic ). The same holds for the
powers of the L;.
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Separated equations associated with second-order
operators

The class Ds.
The separation of Dsty — uy = 0 is given by

Az(X)éz + G(x)az = v1a;
Bi(y)b: + Gi(y)by — by = —v1 by

A3(X)é1 + C3(x)a1 = lhas
Ba(y)ba + Ga(y) b2 — pby = —12by
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N
No first-order operator independent of i can be defined by using the previous
equations.
{(A26X + C2)(A33X + C3)31 = V11ha1

(A36X + C3)(A28X + C2)32 = V1lhas
L — ((Azax + G)(Asds + G3) 0
> 0

(A3(9X + C3)(A28X T Cz))
Lsyp = 11029
[Ds, Ls] = 0. '
Lsy = vy, v = 11, The product of the separation constants is a constant of the
motion — the solutions should depend on v and not on v1,1. . - . = = .-
~ GRastelli (DM Torino)  Separation of Dirac equation =~ Dubna, November 2015 28 / 44



R # 1.
_ Rl 0 /

where the D) are the operators seen above.

(R0
D= (0 R2> Ds separable <>

Ri(y), Ra(y)

— [Ls, D] =0.
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Separation of the Dirac equation and second-order
symmetry operators

The Dirac equation in 2D
0 1
o ieg —ike ieg /ke1 L
Dy = {(ike? —ied > Ox + (ikel1 —ie} Oy + Cl =,

C _ " abeur01 Vb — qe“ VHW —VI-— \//\,

separation scheme D5: D =

(%7 i) l(ao 7)o (%07 ain)o (605
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BN
{Az(X)ég + Cz(X)az =1a

Bi(y)by + Ci(y)bs

— puby = —v1by
A3(x)e:11 aF C3(X)31 = pas
Ba(y)bz + Ca(y)bo — piby = —112by
(Azax aF C2)(A3(9X = C3)a]_ = V1ha1
(A33X I C3)(A28X T Cz)az = vilhas
Ls = ((A28 T C2)(A38 + C3)

(A38 -+ C3)(A28 -+ C2)>

Oo»r «F

DA™

X
N X
i
it
it



@ Stickel coordinates in 2D — Liouville form g13 = A(x) + B(y), goo = 1&11,
@ canonical Killing tensor: Koo = —gooB, K11 = g11A
@ — Robertson condition holds

@ Db separation needs one geodesically ignorable coordinate at least
[MR,CFMR], — A =0, we put B(y) = 3(y)? (to avoid square roots)

@ D5 separation — spin-frame components (e~) and V must be chosen so that

D_ik<0 1)a+;(1 0>0+ L+avi—v o My agkv
s\1 0/ p\o -1)7 MVo+nkV - —dvi-V
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with

qVo = 5 (G(x) — G(x)),

_}/
qVi = ;l(Cl(y) = Gly) - ”7) (1)
V=—5:(Gl(y) + Gly

Then

In Liouville coordinates the vector potential V|, separable in the scheme D5 is
necessarily exact and the force field F,, = 9,V, — 0, V,, is equal to zero.

In Liouville coordinates, the scalar and pseudoscalar potentials are compatible with
separation of variables in the scheme D5 only if V2 and V? are Stickel multipliers,
that is only if

d(K d(V?)) =0, d(K d(V?))=o.
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0 [(—aﬁx ¥ 2igVodx + igdy Vo + G2V2 — 2 \72) I+ inBo,V (

1

0 )=

/ 1" 7\ 2 /
(55200 + 5-3(5) - - Gom-

—iqd, Vi + V2 + 208V + 2) T+ i9, (BV) ((1) 01)] ¥ =v.

«O>» «F>r» «E» < > PENES




In Liouville coordinates, the vector, scalar and pseudoscalar potentials are
compatible with separation of variables in the scheme D5 associated with a
symmetry operator if and only if they are of the form (1).

Remark: first-order terms in decoupling relations disappear if

Ve=0, qvh=-—0 )
qVo =V, qVi= Qﬂ

(V,,) exact — this term can always be introduced without affecting the physics of
the system (gauge invariance)
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With this choice of (V,,), for any 3(y) the decoupling relations (2) and (2) give
respectively

-7 a’l’(x)+ﬁ(6\72—in8XV) ay = vai(x),

—n (a(x) + B(BV? + indV)) a2 = vas(x), 3)
b (y) + (i0,(BV) + (BV + p)?) bi(y) = vbi(y),

by (y) + (=i, (BV) + (BV + 1)?) ba(y) = vba(y).
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For V=V =0 the decoupling equations of above can be easily integrated

NG NG

Uy = (cleTX + czefTX> (dl siny/p2 — vy + drcos\/u? — uy) ,
v _ Vv .

Py = (C3e FX 4 e ﬁ’() (d3sm /112 — vy + dy cos u2—uy),

where ¢ = i(u)*%cl, = —i(y)*%cz, d3 = dip + idan/p? — v,

d4 = d2/,(,— idlx/MQ — V.

Geodesic Dirac equation.

(4)
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An example of Hamilton-Jacobi and Schrodinger equations with scalar potentials
separable in these coordinates on curved spaces [Ballestreros, Enciso, Herranz,
Ragnisco and Riglioni, Ann. of Phys. 326 (2011)]. A generalization of the
harmonic oscillator to conformally flat n-dimensional Riemannian manifolds. In
Liouville coordinates on Riemannian or pseudo-Riemannian manifolds

e % w?e?
H= —— 2 2 s
201 2e2) PP+ S ey
where )\ and w are parameters.
(1, G4 can be chosen so that V coincides with the scalar potential of H and

Vi = %, while G = G3 =0 give Vo = V =0.

The corresponding Dirac equation with V = W is MS in Liouville
coordinates
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Second order symmetry operators of the Dirac equation:
invariant form

A second order symmetry operator for the Dirac equation is an operator of the
form

K = E®*V,, + F?V, + GI

which commutes with the Dirac operator D. Here V,, = %(Vavb + VpVa)

denotes the symmetrized second covariant derivative (expressed in the frame).
The coefficients E2, F2, G are matrix zero-order operators. By expanding the
condition [K, D] = 0 one obtains

£(ab,0) _ (cgab) _g
Flayb) — 4(bFa) — yey gab — j(gaby — veab
642 — 426 = ACVF2 — i(F"V _ VFa) _ % <Eab,yc + 'yCEab) 'YefRefbc + % (Eef,yc _ zl-,chef) Raefch
+ig (Eab'yc + ¢ E"b) Fpe — 2iE%0nayv
VG = i(GV — VG) + ﬁVaREfbc (2Eab,yc + 'yCEab) Yef + % (Fa,yb + ,pra) 'YefRefabJr
i b b i b b ieab i
— 9 (28704¢ 1+ 1E®) VaFye — § (FI9P + 7PF2) Fop + iEPV 5V + iF7V,V,
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A second order symmetry operator (up to terms proportional to D, D?) has the

form:
Eab — eab]I
F? = (¢ + VeI + oy + (%ecbvceab) ~
G = (g +iaV)l+ (iefvbv — eV, Veac) Ny
+ (3 (V¢ — 2igFege™) e+ ia V) y
where we set

A = 4igFel’e?® (= A=0)
Ae = iqFecsC? — 1V, (Re2) + ¢ V4 (v2 n n\“ﬂ)
We = 2iengV

and where the following integrability conditions are satisfied
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bVwe =0 o 2 v(bvv) =0

T gAe =0 = igCAVLF = 2eKeE VYV Vv — Ledv v, (RD) + e vy (ef:’vb(\?)z)
CaV,LR = V¢ (vb/\da) €Seab
¢?VaV = —n (§vaebcveved + ebCVacVez) = —n(e?,Va(eP V) — $e vaebcv D)

VoV = ey VeV 4 €f VeV = €y V(e V,V) — e, VoV, = — L veety,




Second-order operators associated to Liouville coordinates

The second-order symmetry operator associated with the separable Liouville
coordinates is determined by the following conditions

@ e is the canonical Killing tensor associated with the Liouville coordinates

eoo = —1B*, e = epn = e =0

@ «is zero

© F is zero

@ ( is the zero vector

@ the function g’ is given, up to additive constants, by

.1 . 3\ 2
g= <(2k7]3V)2 + <//j> )

Eab — eab]I
F2 = Vpe®T+ (JeVe™) y
G:=gT+ (ierbV - inervb \A/Eac) v?
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Conclusions

Conclusions

The operators of above, even if not the most general possible, are a probe to
investigate the properties of the separation of variables of the Dirac equation.
We can see how coordinates and spin frames are related to each other, what kind
of metrics are generated by the separation conditions and how they are related to
Hamilton-Jacobi separation of variables.

We can find explicitely the transformation from separable to pseudo-Cartesian
coordinates (Horwood-McLenaghan).

Although the physical Dirac equation is in dimension four, separation in two
dimension can occur after reduction by symmetries (Kerr solution).
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Conclusions

Future directions

- u fixed and symmetry operators depending on p (Fixed-energy separation).
- 3D and 4D
- separation in other representations of the Clifford algebra
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