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This talk is about:

» Conformal invariance and CFT

* (Odd parity) CFT correlators

» Regularization in momentum space
* Pure contact terms correlators

* Higher spin currents



L I I

Why are CFTs important?
-

at very high energies masses should become unimportant, thus at
such energies the relevant field theory should be scale invariant —
conformal invariant.

CFTs are the interface of gravity in AdS/CFT correspondence
CFTs are relevant to strongly correlated systems

from a theoretical point of view, CFTs can be solved (even if they are
not supersymmetric and or not Lagrangian)

CFTs say a lot about gravity
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| will talk about current correlators, in
particular about e.m. tensor correlators.
Why are they so important?

Because the source of the e.m. tensor is the
metric (or, better, the metric fluctuations).
Thus the e.m. tensor correlators can be
Interpreted as scattering amplitudes for

gravitons.

(C.Closset,D.Dumitrescu,G.Festuccia,
Z.Komargodski,N.Seiberg,X.Camanho,J.Edelstein,
J.Maldacena, G.Pimentel, A.Zhiboedoy,...)



Conformal Invariance

-

he conformal group in dimension D is formed by the Poincaré group plus

-

B® scaling transformations
" — Az
#® and special conformal transformations

M+ pHp?
1+ 2v,2H + v22?

rH —

They form the group SO(D, 2).
In D=2 the group is infinite dimensional and conformal transformations are
defined by holomorphic and antiholomorphic transformations

s=a'+id®, 2o f(2), fR)mztez), e(z)=) enz"t
- .
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The conformal Lie algebra

‘ The Lie algebra generators of the conformal group

Commutators (extra Poincarée)

P, = —ify
D = —izt 8,

Lyv = i(2p0y — 20 0y)

Ky = —i(2z,z" 8y — 228,)

[PH, D] = iP*

[KH, D] = —iKH

[PH, KY] = 2in"Y D + 2iLF
[KH,KY] =0

[L* D] =0

[Lev, KA = in*FKY — inp*vY K#
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Representations of the conformal Lie algebra

For a generic tensor field O(z) of weight A

i[Fu,O(z)] = 8,0(z)

i[Lyw, O(x)] = (2pBy — 2,8u)0(x) + 15,,0(z)
i[D,O(z)] = (A + z18,)0(z)

i[Ku,O(z)] = (2Azy + 22,270y — 228, — 2iz*%,,)0(z)

For the e.m. tensor, in particolar,

i[D, Tpw (2)] = (d + 2*8)) Tpw (2)
i[Ky, Tyw] = (2Azy + 225 -8 — 228,) Tpw
+2 {-TEET.:HJT}'A# + -Tanctﬂ.hv — mpTAv — -T:.J'Tp.h}

—pAF



Covariance of correlators

‘ For instance the two-point function i1s well-known \

(Tuv (2) Too (¥))
e/2 2

— m (I#P (z—y) o (z—y)+Tup(x—y) Ius (x —y) — Eﬂpvﬂpa)

where
Ty Ty

Tw (2) = M — 2—5

One can prove it satisfies
(Kx (@) + Kx(®)) (Tuw (€) Tpor (4)) = 0

Higher order comelators are much more complicated and may involve several tensorial
structures. There is a rich literature: H.Osborn, A.C.Petkou, M.S.Costa, J Penedones, D.Poland,
S.Rychkov, Y Stanev, A.Zhiboedov, T.Hansen, E.Elkhidir, D.Karateev, M.Serone, ..
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Singularities of correlators

‘ All correlators are singular at coincident points, but what matters is integrability. For instance \
the singularity

1

T

Is nonintegrable in d = 2, but integrable in d = 4 (it can be Fourier transformed).

The correct attitude is to consider such expressions as distributions. Distributions are linear
functionals on specific spaces of functions (test functions). In general

B distributions are derivatives of locally integrable functions

For instance the Dirac delta function is the derivative of the step function (which is locally
integrable).
So using distnibution theory seems to solve all singularity problems.

L .
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EM tensor 2-pt function in 2d

‘ The most general two-point function of the e.m. tensor in 2d has the form \
c/2
(Tuv (2) Tpo (0)) = pry (Tpp (2) Tve (2) + Tuvp () Lpo (2) — NuvMpo)

Let’s call it the bare or unregulated correlator. For = = 0 this 2-point function satisfies the
Ward identities

O (T (z) Tpo (0)) =0,
(TH (2) Tpo (0)) = 0.

But for x = 0 it is ill-defined. We need to regulanze it.

—pAr



Differential regularization

‘ Introduce two differential operators \

Divps = OpBuBpds — (MuwBpBo + Mpo0uBy) O+ Myuwnpe 00,

Divps = Oubypdo — % (MupBy B0 + M pBuBo + NMue By Bp + Mo Budp) L
+% (MupMve + MupNue) LILL
Thenforx £ 0
T (2) Tpo (0)) = _% #vpfr (log (u*2?)) — (ﬂ}-'«ll}ﬁﬂ ﬂ}ffi:}PE’) (log {”21’2}}2 :
This is conserved but

[ c
(Tﬁ (z) Tpo {D}> = _Eﬁ”yﬂuv,ﬂa {]{}g {I—" EE}} = 18 (8p80 — Mpe L) Ulog {HETE} -

Since Olog (p?2?) = 4ws'?) (z), we get the anomalous Ward identity

| (Tt (@) Tpo (1) = == (8p90 — 1pe L) 6@ (2 — 1) -

—pir



cont.

| .

In the approximation ¢’ (z) ~ n** + h*?(x) + ... we have
R ~ (0,0, — n,,0)h*. Thus this is the lowest approximation
to the covariant expression

LR

which is the well-known expression of the trace anomaly in
2D.

—pU



Differential regularization not always

so handy. ..

....often more convenient to go to
momentum space.



The CA In momentum space

‘ If we Fourier transform the generators of the confomal algebra we get (a tilde represents the \

transformed generator and 8 = %

i

w = —ky
D = i(d + k*8,)

Ly = i(kuby — kudy)

Motice that ﬁ’“ is a multiplication operator and K « 1S @ quadratic differential operator. The
Leibniz rule does not hold for K u and 15# with respect to the ordinary product. However it
does hold for the convolution product:

Ku(f+3) = (Kuf) %3+ f»(Ku 3)
where (f * §)(k) = [ dp f(k — p)g(p).

| |
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The CA in momentum space

| -

Nevertheless these generators form a closed algebra under
commutator

K,,K,|]=0

r

:E f’ p] — “(’*‘}'MLHP -+ T}‘uvah T?uiffvp — T?upLuA

—p



Ward 1dentities in configuration space

‘ If b¥ Is the special conformal transformation parameter the classical Ward identities for e.m. \
tensor correlators are

(b-K(z) + b-K(y)) {07 Ty (2)T p(y))|0) = 0

and

(b-K (2) + b-K (y) + b-K(2)) (01T Tuw (2) T (y) T (2))0) = 0

and so on. And If there are contact terms (possibly anomalies) they become

(b-K(z) + b-K(y)) (O] TTpw ()T p(y))|0) = Mur Axp(z,Y)
(b-K(z) + b-K(y) + b-K(2) (O[T Ty (2) T p(¥) Ta3(2))[0) = N Arpas (2, Y, 2)

where the RHS are (linear in b) cocycles (of SCT cohomology).

L |
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Examples of ‘bare’ correlators

-

|7‘I’hre Fourier transform of the 2-pt function of a scalar field of weight A is
~ (K2)A-%. Applying K,

K, (K2)A=% =0 b-k(K2)A %1

The Fourier transform of 2-pt function of two currents in 3d is

~ = 517 'ki - ktk
{ji{ijj(_k)} = |k| 4

Working out

(2(6-8) — (b-k0 — 2k-85-9) ) Gi(k)75(—F)

+2(6'9; — b:8") (Gu(K) 75 (—k)) + 2(6'8; — b;0") Gu (k) ju (—F))

une finds out that it is 0. J

- 1



How do regularized correlators look like’

e .

# non-local terms (bare correlators)

egularized correlators contain:

# local terms (delta functions or derivative thereof in
configuration space)

» partially local (a mixture)

Contact terms are the local ones. They appear as:
# delta function-like objects in configuration space
# polynomials of the momenta in momentum space.

L .



What do contact terms represent?

o

2 anomalies in even dimensions

-

ontact terms are

2 action terms in odd dimensions

In momentum space they show up as polynomials of the external
momenta, so they are particularly simple to analyse.

Program:

» Solve the conformal WI in general (Bzowski, Mc Fadden, Skenderis)
#® Find all possible contact terms

# Find all the odd parity contact terms

L .



Search for odd-parity contact terms

|7A systematic search can be done j
# Dby means of a Mathematica code to solve Wl's (B. Lima de Souza)
# Dby resorting to calculable models.

In the following | would like to concentrate on a simple model, a free
massive fermion model in 3d.

Such a model is not conformall So we will take the IR and UV limit of
correlators in order to find conformal covariant ones.

L .



Free massive fermion model in 3d
|7Actic-n —‘

S = fdﬁm [ipy* Dyt — mapyp], Dy = 0 + Ay

where A, = A (z)I™ and T are the generators of a gauge algebra. The
generators are antihermitean, [T%, T?] = f**°T, with normalization
tr(T*T") = nd®®. The current

Ji(x) = Yy T
Is (classically) covariantly conserved on shell
(DJ)* = (889 + f**°A"™)JS =0

(see also Dunne,Babu,Das, Panigrahi)

| |



Free massive fermion model in 3d (cont.)

The effective action is given by

0 liﬂ_|_1 m
wia = > — [ [[ dziA®t#i(zy). .  A%nEn (2o)(OIT JSL(z1) - .. J3™ (z0)|0)
n=1 ) i=1

We will consider 2-pt and 3-pt current correlators,
(O|T J (x)J;(y)[0), and (0T Jg(x)J,(y)J3(2)|0) (1

whose Fourier transform are Ji} (k) and jﬂg‘i (k1, ka). The one-loop conservation law in

momentum space Is

ktJ50 (k) =0
—igh J305 (K1, ko) + fP2TI5 (ko) + foed TS0 (k1) =0

where g = k1 + ko.

L |




Free massive fermion model:2-pt

| .

he 2-pt function is

n _., m k
— 0%, k° T arctan o

Jab({odd
Jlu :.-'( ) (k}

where k = Vk2 = VE. The IR and UV limit correspond to 2= — coand 0,
respectively. We get

1 IR

J’”aE{ﬂdd} L) — n 5ab, ok
Tt { ) H uv

2 s
7

=|3

Fourier anti-transforming and substituting in W ( A) one gets

fd?*:re“”‘}‘ Aj 0y A}

L .



Free massive fermion model:3-pt
|

TNk, k) =i

he 3-pt function is more complicated

_‘
d3p 1

. a b 1 C 1
@™ (W = T = T =)

The result is a generalized Lauricella function (Boos,Davydychev). In the
IR we find

e \/E 2n
#1,abe(odd) . 1 abe 7(2n)
e CN S e Z:; (?) Fe%ry) (K, ko)

and, in particular,

IO (K1, k2) = —6€um

‘ which corresponds to the action term \

~ / Bz et prre A2 AD A



Lauricella hypergeometric function

Basic integral

d%p 1
(2m)4 (p? —m?)*((p— k1)? —m?)B((p— ¢)* — m?)"

Ja(a, B,y;m) =

This can be transformed into

j1—d d_q g Tla+B+y—9)
Ja(a, B, y;m) = 7 (—m*) 27 T — -
(4m) % (x+B+7)
By |2TATT ?ﬁ'r‘ q? k3
ﬂ+ﬁ+'f 'm?2’ m?

where &3 is a generalized Lauricella function ({ajn =TI(a+n) ,T{n}):

a,az,as, ﬂd
.31, 23,23

- )
21 232 25° (@1) 4y +92+93 (82) 51 +32 (83) s +55 (B4) jot73

Py DJE_DJE_G :u' ja! ja! (€)2714242+243

=

- 1M



Free massive fermion model:3-pt (cnt.)

e .

utting things together we find the effective CS action

cs = F [ Batr(AndA+24nanA
A 3

# Inthe IR k =1, so the CS action is invariant also under large gauge
transformation.

# s Inthe UV things are more complicated. Eventually we get the
same action with K = w7*. So, the UV limit is 0.

# |[f+ carries aflavourindex: =1,..., N, the previous result is

multiplied by NV, and « = 7N 7-. So we can consider the scaling

limit N — oo, == — 0 and « fixed and finite.

Important! Both 2-pt and 3-pt correlator satisfy the Wl's of CFT (and they
re pure contact term)!



A note on conservation

‘ For the 3-pt correlator of the massive theory we have \

but

= 1 2m 2m
u jabe (b k = ——fabee, k7 ——arccot (—)

i abe o 2m 2m
—— € ki ——arccot | — 0
AT .f AL e ;-’.‘2 ( ;-’.‘2 3&

_ﬁq# ji?’id} abe “i'?l ; kg ] + fﬂhd jliidd:'dﬂ {L’.‘Q} + facd j.i?;ddjdh (kl }

1 2m 2m 2m 2m
— —E_f”hce;mg (kf k—larccc-t (k_1) + k3 Ea;rcmt (E))

1 2m 2m 2m 2m
-I—E_fﬂbﬂEAyg (kf Ea.rccﬂt (Fl) -+ .I’f-g k—garccﬂt (k_g)) =0

In the IR and UV limit the last equality is not conserved and, to preserve covariance, one has
to subtract counterterms.

[
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E.m. tensor correlators

‘ MNext come the e.m. tensor correlator. It is naturally coupled to the metric. The action in the \
massive model is

_ _ 1 1
S = / d*ze [{PELY Yt —miby], Vi = + swubeS', B = o RaRaE

The mass term breaks parity!
The energy-momentum tensor

THY = iiﬁ (Eé"r“ VY 4 o v) Y.
Is covariantly conserved (on shell): V,THY = 0.
At quantum level (the Fourier trasform of) the 2-pt correlator is

2 2

= (odd) B m L5 kuky\ k° +4m |k|
Tpvhp (k) = MEUFP k7 lgm (TF;LA T T2 ) + (ﬁp}. + 2 I&] arctan om |

‘ In the effective action the e.m. tensor couples to Ay, where gy = Mpw + hpw + .. .. \

—B.1



Gravitational CS
|

n the IR and UV limit this corresponds to the action term

-

gP—odd _ 19"‘% f &Pz €5y W 7 (8,05 — nua0) B (1)

This is nothing but the lowest order expansion in h,, of the gravitational
Chern-Simons action in 3d.

_ K 3 A b b
cs = —mfd T etV (8#.::.:“ Wipa + m#ﬂ WyptWire )

® |nthe IR limit we find k = 1 (the action is well defined)

# |nthe UV Imit k = 3 I?:I S0 again the limit vanishes unless we

consider N ﬂavuurs in which case we can take the scaling limit that

L leaves \ = N {2 fixed. J



Gravitational CS (cnt.)
|7The next order in the CS action is —‘

K
384T

—28,8°h (hGBchoa + h§chan) + 8, 8°hg (hS 8ahipe — hS§dphac)
+ (80" h3 06§ hea — 8u8°hgBahS hen) — Ry h58, (Dhay — Badyhl ) )

' 5l3)

2
f d*z et (25.1 PubOxho Ouh®® — 20ahy,8hiy 8 hex — 2 8ahy, Bhy, dch

which is generated by the 3-pt e.m. tensor correlator.

(work in progress, almost finished)

| |






Higher spin currents

‘ In the massive fermion model in 3d we have other conserved currents. The next after the em \
tensor is the third order current

_ 5 _ 1 _ m? _
Juipaps = VV(py OpaOuq) ¥ — 55{#1‘1{"?’#25#3}‘!’ T+ gﬁiﬂlpzﬂgmﬂa}ﬂﬂb - ?"'?{ﬂmz’v‘f"?’#a}w

This is conserved (on-shell). We consider the external source BE¥A and couple it to the
theory via the action term

f d*z.J,,, 5 BF

Due to current conservation this coupling is invariant under the (infinitesimal) transformations
0Buyx = 9 Aya)

In the limit m — 0 we have also invariance under the transformation
6Buux = Ay

‘ which induces the tracelessness of J,,, 5 in any couple of indices. \



2-pt correlators

‘ We can construct an effective action for By, via \
=, jntl £ Ny
WIB = >~ [ [] deiBr X @) OIT {Jyuiy (20) - Tpvarn (@)} 10
n=1 : i=1

by computing the n-pt fucntions. For instance the (odd-parity) 2-pt correlator (after
subtractions) in the IR is

=(odd.I R 1 1.4 1.4
TF{L?PZFEI}II’ZFEU‘:] = §5#1F15k5[ﬁk MuzpaTvovs — Ek NuzvaMpavs
1, 2 . 1
_ﬁk (Fvg kvaMuopa + KpskpaMusvs) + Ek Kz kvy Mpavs — ﬁkﬂz k#skvzkvz]

which iIs conserved and traceless. In the UV limit (after subtractions) we get

~ (odd, UV 1 m 1 |
T{D ) (k] — EE E#lvlﬂ’ka [Ekﬂz k#akvzkvz _ Ek k#akvznﬂzvz

P23l vais
k2 1 4 1,
+ﬁ (RugkuaMuapa + Kus Kpa Muges ) + Ek Nuzvz Mpava — Ek ﬁ#z#afhfzva]

|

which is also conserved and traceless.



Effective action

‘ They correspond to the effective action term \

s [d3_.1- €pivio [ﬂﬁﬂﬂlﬂzﬂaﬂpzﬂﬂsﬂuzﬂps BY1V2V3a _ 1A% BH1HzH3 Dﬂpaﬂmgvﬂ‘a .

4289 BH1A 08,8, BY1V2V3 + 287 BH1K2H3 [2BY1 o uq
— 8% BH1A ADEB” PP]

Same construction for higher order currents.



Possible generalizations

® Covariantize with respect to a gauge field
I (x) — I () = gy, T 4

coupled to B;; with gauge transformations
0B . = (DA)g. ., D=d+ A

o Covariantize wrt the metric. Replace everywhere 9 by
V and consider diffeomorphisms.

—o 1M



Conclusion and prospects

The massive fermion model in 3d I1s an example of pure
contact terms correlators:

» they are local;

» they correspond to terms of (gauge, gravity, more
general) CS action;

o they are characterized by a more complex conservation
law:;

» no free field theory generates them.

—pAl




Conclusion and prospects (cnt.)

| .

Ongoing program and questions:

» find all the CFT correlators, more specifically the
odd-parity and local ones;

# In the odd-dimensional case, recognize the limiting
(CS?) UV and IR theories;

# understand the nature of the parameter m in the
framework of AdS/CFT;

» study the problem of off-shell gravity amplitudes
(scheme In/dependence)

—p



THANKS



