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Introduction |

@ The renormalization group approach provides a natural framework for
the understanding of critical properties of phase transitions. A very
large variety of critical phenomena can be described by so called ¢*
models, ¢ = (¢1,...,®n). There are several ¢* models:

» The common O(n) symmetric one field model (7 is a temperature-like
parameter and g > 0):

1 1
Sowm (9) = 5 (Vo) +7¢2] + 228 (¢2)°
» Extended O(n) + O(m) symmetric model

1
Sotm+om (91:62) = 5 |(Vér)® + (Vea) + 1163 + 7263

4 % [g1(¢%)2 + g2(¢§)2 + g3(¢%)(¢§)]
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Introduction |

@ In the O(n) + O(m) model six different fixpoints (FP) were found.
Three of them are always unstable and the stability of three others
depends on n and m (M.Fisher et al).

@ The O(n)+ O(m) model has been used to describe multicritical
phenomena. (The critical behavior of uniaxial antiferromagnets in a
magnetic field parallel to the field direction, the SO(5) theory of high
T. superconductors).

@ Also interesting phenomena of inverse symmetry breaking, symmetry
non restoration and reentrant phase transitions were reported
(Weinberg, Ramos, Pinto).
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Introduction I

@ Recently frustrated spin systems with non collinear or canted spin
ordering have been the object of intensive research (Kawamura,
Pelissetto and Vicary et al., Holovatch) (Examples: Helical magnets
and layered triangular Heisenberg antiferromagnets). Both fields have
n components and the model possesses the O(n) x O(2) symmetry.

Somyxo(2) (¢1, ¢2) :% [(V¢>1)2 + (V) + 7 (dﬁ 4 ¢§)}
u(@+8) + hv (G - (D))

@ Here the scalar product ¢1¢; is present.
@ In the 4 — 2¢ expansion, the number of FPs and their stability depend
on n.
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Introduction [l1

@ We have studied the critical behavior of the O(n)-symmetric model
with two n-vector fields within the RG field-theoretical approach in
4 — 2¢ expansion.

1

Sotw) (¢1,62) = 5 [(Vér)” + (Vo) + 16 + magh + 270

+

- N

[gu(dﬁ)z + 82(03)° + 2812(¢7)(¢3)
+2g33(<b1¢2)2 +2v2g13 (¢1)2 (h1002) + 2V2g53 (452)2 (¢1¢2)}

@ The model becomes O(n)+0O(n) symmetric when
T3 = g33 = g13 = &23 = 0.

o Setting 71 =72, T3 = g13 = g23 = 0, 811 = &2, 812 = 811 — £33
leads to the O(n)x0O(2) model of frustrated spins.
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4 — 2¢ Expansion |

o It is useful to rewrite the interaction part of Sp(,) as

Sint(¢1, ¢2,8) = %Zi,/:l TkguZi = 517,

where
1y o
L | = b3
13 V2162
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4 — 2¢ Expansion Il

@ The expression for the critical exponents can be taken from (Brézin,
le Guillou, and Zinn-Justin in Domb-Green Vol.6).

@ The six 3 functions 3;; = 110, g;;, where 1 is an auxiliar parameter
with the critical dimension 1, can be written in 1-loop order

1 1
Bij = —2egij + E(n + 8)gikgu + > Cij k1, mn&kI&mn

J Cij,kt,mn8kI8mn

1 —8g% + 2812833 + 825

2 —6gi11812 — 6812820 — 4813823 + g11833 + 485 + 285 + £20833 + 285 + 825
3 —6g12823 — 3813833 + 6812813 + 3823433

2 —8g2 + 2812833 + 85

3 —6g12813 — 3823833 + 6812823 + 3813833

3 —2g2% —2g2, — 6g% + 2g11833 + 8812833 + 4813823 + 2822833

We have rescaled the couplings by a factor 872 as usual.

@ The FPs g* are the solutions of 3;;(g*) = 0. So(n) is symmetric under
the simultaneous interchange of g11 with goo and gi3 with go3. The
simultaneous change of signs of g3 and g»3 leaves the solution

invariant.
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4 — 2¢ Expansion Il
@ The stability-matrix can be easily obtained:
wij ki = 0B;j(8)/ 08kl g=¢

Its eigenvalues are the critical exponents w.
@ The critical exponents 7 are obtained from the eigenvalues ~g of the
symmetric 2 X 2 matrix v¢ at g = g%,

1 2 2
{10} = 1¢ (200 2)gly + (n+ 2)gls + (0 + 1)g53 + 2081, + 481283 + 3(0 + 2)a)
V2(n+2)
{70} = 6 ((g11 + g12 + 833)813 + (822 + £12 + £33)823) »
1 2 2 2 2 2
{vo}o = E((” +2)g13 + 2(n + 2)g3, + 2ng1y + 3(n + 2)g53 + (n+ 1)g3; + 4812833) »

calculated at the specific FP, with respect to n; = 275,

@ The critical indices 1/v = 2 + ~* are obtained from the eigenvalues
~¥ of (in one-loop order):

1 ( (n+2)gun ngiz + g33 (n+2)g13
Yr=—=| ng2+gs (n+2)agxn (n+2)g23
(n+2)g13 (n+2)gs 282+ (n+1)gss /.
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4 — 2¢ Expansion [V

@ The three crossover exponents are eigenvalues of the 3 x 3 matrix (in
one-loop order)

2811 833 2g13
g33 282 2823
2g13 2823 2g12 + 833

Yer,s = —
g=g*

@ The fourth crossover exponent is (in one-loop order)

1
Yer,a = —&12 + §g33-
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Field rotations |

@ The direct calculation of FPs from the 3 functions leads to more than
50 FPs and several lines of FPs!
@ Some FPs are equivalent due to the internal rotation of the fields:

(4)-( 29 @)

@ Performing the rotation yields
%cos(2<p) \/isin(2<p)

/ T % + % cos(2¢p) S
T} =M| I |, M= % - %cos(24p) 1 5 cos(2¢) \/ sin(2¢)

T 13 _\/;s,n(2¢) \/;sm(Zgo) cos(2¢p)

r\)h—' NI

@ The matrix M is orthogonal and the interaction transforms according
to

1
Sint(¢1, 92, 8") = gI’Tg’I’, g = MgM’.
@ Obviously both sets of couplings describe the same critical behavior.

A. Weber (ITP, University of Heidelberg) Field rotations 04.09.08 12 / 36



Field rotations Il

@ One finds that the following is invariant under the rotations

a1 =g+ 82 +2g12, a@=gutg2+egss (1)
@ whereas
a31 = g11 — 822, a2 = V2(g13 + &23),
as1 = —g11 + 2812 — 822 + 2833, a2 = —V8(g13 — &23)

transform according to
aél _ cos(2¢p) sin(2¢p) as;
a3y —sin(2p)  cos(2¢) asp
< 3;1 ) 7( cos(4¢) sin(4¢) ) ( an )
e - —sin(4p)  cos(4p) an :

@ For the interactions invariant under O(n)xO(2) the amplitudes as1, as, as1, as
have to vanish. Otherwise we may choose ¢.

and

@ We will choose it so that asx = 0, i.e g23 = g13.

@ From the FPs with the condition g»3 = gi3, all other FPs can be obtained by
means of the orthogonal transformations leaving the expressions (1) invariant.
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The classification of the fixed points in the large n limit

@ In the large n limit we may neglect the last term in the § functions:

1 1
Bi = —2egij + E(n + S)gikgk/+§CU,kl,mngkIgmn

expressing g in terms of the matrix p,

g =4ep/(n+8).

e At criticality (8 = 0) and in the limit n — oo the matrix p becomes
idempotent: p = p?.

@ The only eigenvalues of idempotent matrices are 0 and 1. Thus
depending on the number k of eigenvalues 1 there are four types of
symmetric (3 x 3) idempotent matrices p(k)

Py =0, p) =zz, P =0i—zz, P =dn ij=123,

with the restriction
212 + 222 + 232 =1.

o Further conditions on z for the classes p(12) can be obtained by
considering the first two orders in 1/(n+ 8) to g*.

A. Weber (ITP, University of Heidelberg) The classification of FPs for n — oo 04.09.08 15 / 36



The classification of the FPs in the large n, class p(o)

@ This class consists of the trivial FP
g"=4ep®/(n+8)=0

only.
@ The stability-matrix is diagonal:

Wij = —(26)(5,'J'

All its eigenvalues are negative and the FP is unstable.

@ This FP is exact and remains invariant under the orthogonal
transformations.
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The classification of the FPs in the large n, class p(l)

@ The following ansatz (h is symmetric) is put into the S-functions

«_ 4 4e ) 1
6 = ro ot oot (e @
@ We then obtain the following conditions on z:
(1—z5)(4 — z2)z12(z1 — 22) =0 (1 — 255)(4 — 2}5) 21023 = 0, 3)
where z1» := z; + z». Thus solutions are given by
712 = 0, £1, +2, +v/2,
o the first solutions follow immediately from the egs. (3), whereas the
last pair follows from z; — zp =0, z3 =0 and 212 + 222 + 232 =1 and
describes an O(n)xO(2)-invariant interaction. Due to (2) a change of

the sign of the zs does not alter the FP. Thus z;5 and —z;5 yield the
same class of FPs.
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The classification of the FPs in the large n, class p(l)

o The solutions zi» = 0, +1, 42, +1/2 divide the class p() into
subclasses. Each subclass has its own characteristic critical exponents

@ While z15 = z; 4+ z» stays constant, z; — z» and z3 vary under rotation
according to
2 2 2
(z21 — )" + 225 =2 — zj,.

o For z1p # 41/2 one obtains a whole continuum of solutions, i.e. lines
of FPs!

@ Each subclass has its own characteristic critical exponents. In the
limit of large n they are

w = {(2¢),0 (2x), —=(2¢) 3x)},  7r ={—(2¢),0 (2x)},

e = {C 1t znf2-20), Bty 20}
Yo = {(éin)z(lizu\/rzfz)}-

A. Weber (ITP, University of Heidelberg) The classification of FPs for n — oo 04.09.08 18 / 36



The classification of the FPs in the large n, class p(z)

@ The following ansatz (h is symmetric) is put into the S-functions

4e 4e 1
i =——(05 — ziz —o5 N ——n3 | 4
8ij n+8(6‘, zizj) + n hJ+O((n+8)3> (4)

@ We then obtain the following conditions on z:
(2122 + 1)2122(21 —2) =0, (2122 + 1)zlzz§ =0. (5)
where z1» := z; + z». Thus solutions are given by
210 = 0, +i, +v/2,

where the first two solutions are immediately obvious from egs. (5)
and the last one follows from z; = z», z3 = 0, and 212 + 222 + 23? =1
This last solution represents an O(n)x O(2)-invariant model.
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The classification of the FPs in the large n, class p(z)

o The solutions zi» = 0, i, +1/2 divide the class p(@ into subclasses.
Each subclass has its own characteristic critical exponents

@ While z15 = z; 4+ z» stays constant, z; — z» and z3 vary under rotation
according to
2 2 _ 2
(z21 — )" + 225 =2 — zj,.
o For z1p # 41/2 one obtains a whole continuum of solutions, i.e. lines

of FPsl!

@ Each subclass has its own characteristic critical exponents. In the
limit of large n they are

w= {(2€) (3x),0 (2x), —(2€)}, 77 ={—(2¢) (2x),0},
’y; = {(27;)(_24_2122)7(27”6)(_1:& \/ 1—&-22122—2{‘2),@2122},
’y*: {(28%(2:t212 2—2122),}.
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The classification of the FPs in the large n, class p(3)

@ In the large n limit one obtains

g = 4ep® /(n+8) = 4e5;/(n+8),

which yields the exponents in leading order

o (20 @)}, 77 = {~(22) (3)}.
= {0,200 g, B 30 1
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Solutions for finite n, Fixed Points and Critical Exponents

@ The 'gauge’ condition gi3 = go3 yields (simple) Representative
Solutions (RS), all other solutions can be obtained by means of
rotations.

o For each class p(¥) there is one solution invariant under O(n)xO(2)

@ Solutions not invariant under O(n)xO(2) have one exponent w =0
since the field rotations create lines of fixed points.

@ All solutions with the exception of the trivial FP have one exponent
w = 2¢ independent of n in one-loop order, since 3;; = —2¢gj;+ term
bilinear in the gs
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Solutions for finite n, Fixed Points and Critical Exponents

@ RS 0.1 This is the trivial (interaction free) fixed point. All anomalous
exponents v* vanish

Yo ={0(2x)}, 7 ={0(3x)}, 7o ={0(4x)}, w={-(2¢) (6x)}

e RS11 g = n+8, other gjj = 0. z1o = £1. RS 1.1 represents the

unstable n-Heisenberg-Gaussian FP of the O(n) 4+ O(n) model. The
critical exponents are given by

o {_(”:7?2(326),0 (2><)}, Vo = { i( 90 (3><)}
L [(n+2)e - C(n+6)2)  6(20)
76 = {W,O}, “’_{(26)’*(26) @) ——7% ’7n+870}.
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Solutions for finite n, Fixed Points and Critical Exponents

o RS 1.2 g11 = g = #75¢,812 = S720€, other gj = 0. z15 = 0.

RS 1.2 represents the biconical FP of the O(n) + O(n) model (stable
for n =3 in the O(n) + O(n) model). The critical exponents are

n(n? — 3n + 8)(2¢)? 3n(2e) (1 — n)n(2e) (n — 4)(2€)

*

Yo = { 8(n2 + 8)? 5 )}’ ’7{_n2+8’ m2+8 | n2+8 }
n(2e )(2€)
i)

{O 20) 8(n —1)(2¢) (4 —n)(2+ n)(2¢) (4 — n)(n—2)(2¢) (2 — n)(4+ n)(2e)

n?+8 ! n?+8 ’ n? 48 ’ n?+8

e RS 1.3 Not only invariant under O(n)xO(2), but even under O(2n).
811 = 822 = ﬁe,glz ni4e other gjj = 0. z1p = +v2. RS 13

represents the for n < 2 stable (in all models) isotropic
2n—Heisenberg FP. The critical exponents are

. (2n + 2)(2¢)? . (2n+2)(2¢)  2(2€)

Yo = {74(2n+8)2 (2X)} , 777{7272:1“3 "Tonts (2><)}7
- 2(2¢) B 8(2¢) (4 — 2n)(2¢)

Yer = {_2n+8(4x)}’ wi{(%)’ nrs P s (3X)}'
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Solutions for finite n, Fixed Points and Critical Exponents

@ RS 1.4 g1 = %4’86 + \/3(2,1(+8)3)€ g = nige, other g;; = 0.
z1p = 2. RS1.4 also belongs to the O(n) + O(n) model. This FP
coincides with the biconical FP for n = 1. In one loop order one
obtains the exponents

. (n® + 37n 4 16)(2¢) 2(1 — n)(2¢)?
o = {Wi('w T 2n+8)5/2
. @+m0eq) \/m + 48n2 + 32(2¢)
Y= 2(n+8) 2(n + 8)3/2 ’ n+8
2 2\/2(1 = n)(2¢)  3(2€)
Vor = - e)i\/ n)e, (6
n+8 (n+8)3/2 n+8
{ (6= m(2c) (10— n)2) (n+2)(2¢)  /n? — 1880+ 196( 25}
w= 0, (2¢) s s
n+8 n+8 2(n+8) 2(n+8)

We considered the coupling in two loop order, since it yields in order ¢
the region in which the couplings are real. We obtained
ne =1 — (2€)/48 + O(2¢)2.
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Solutions for finite n, Fixed Points and Critical Exponents

@ RS 2.1 (z12 = 0) Two of the exponents w equal 0 for any n in
one-loop order.

@ One is due to the invariance under rotations between the fields ¢.
The other one indicates that there may branch off a second line of
FPs.

@ One finds besides the FP of two decoupled systems (RS 2.1a)
811 = 83, other g =0
another solution (RS 2.1b) with
811 = &2 812833 = 0(€%), 813 =8»3 = 0(63/2)

@ Both types of FPs agree in one-loop order, but differ in the next order.

@ In the following we give the FPs and critical exponents in two-loop
order (for 73 in three-loop order).
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Solutions for finite n, Fixed Points and Critical Exponents

e RS 2.1a

. . 4 4(n* —2n—20) ,
8 =82 = mrge (n+8)° €, other g; =0.

This solution describes two independent O(n) models and is the
decoupled n—Heisenberg—n—Heisenberg FP of the O(n) + O(n)

model.
: (n+2) (n+ 2)(n? — 560 — 272
A { 4(n +8)? @97 16(n + 8)* }
vy = {fﬁ(ze)z, 7%2(2 ) — (n+2(13;+44 2X)}
o= {—m( ) %(ze) )~ 3 M}
w= {(2 ) — 38":8;:) (26)? (2x), :T_:(ze) n %(ze){
,%(25) _(n Jr(:,t:(—ns)_3 22) (2¢)?, 2(:::)2 (2¢)? 0} .
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Solutions for finite n, Fixed Points and Critical Exponents

@ RS 2.1b is new to our best knowledge. It agrees with RS 2.1a, which

describes two uncoupled systems, in one-loop order:

. . 4 6_9n3+98n2—400n—2272€2
fu =82 = n+8 2(n + 8)3(n + 14) ’
. . 2(n+4)(n+2)(n—4
i = g = VA D +2)(1=4) 5
(n+8)%v/n+14
= ___ n+2 o
&1z = 2(n+8)(n+14)°"
. n+2)(n—4
833 = ( ) ) 2

(n+82(n+14)°"
In the limit D = 4 it is real for n > 4.
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Solutions for finite n, Fixed Points and Critical Exponents

@ RS 2.1b lIts critical exponents are

. (n+2) s (n+2)3/2(n— &) (n+2)(n+4) 52 (n+2)(n® —56n — 272)
Yo = > (2€) -

2¢)%,

(2€)%,

(2¢) e’}
4(n+8) 16(n + 8)3v/n + 14 16(n + 8)*
. n+2 20) (n+ 2)(29n2 + 470n + 1256) @ )2 n+2 20) (n+ 2)(23n2 + 434n + 1208) 2
=< — €) — €), ———_(e¢e) —
T (n+8) 4(n+ 14)(n + 8)3 n+38 4(n + 8)3(n + 14)
3(n + 2)(n? + 10n + 64) 262
B S A S B A 8
4(n+ 8)3(n + 14)
N 20+ n® — 12n% — 660n — 2416 72 2 20+ 3n3 — 4n? — 700n — 2512 (26)°
=< —— (2¢ €)”, ———(2¢ €)
Ter nis a(n+83(n+ 14) n+8 a(n+83(n+14)
(n+2)(n+ 6)(n + 32) 2 (n+2)(n+ 26) 5
- (2¢)°, — (2¢)" ¢,
4(n + 8)3(n + 14) 4(n+ 8)2(n + 14)
3(3n+ 14 +2 —4 + 2)(15n° + 242n° + 656n + 32
w={o - 502 (), - "2 (a2 0, T g 4 (1A ° nt )
(n+8)2 (n+8)2 n+38 n(n+ 8)3(n + 14)
n+ 4(2 ) 3n* + 120 — 3320 — 1252n + 64( 2
_ €) —
n+8 n(n + 8)3(n + 14)
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Solutions for finite n, Fixed Points and Critical Exponents

@ RS 2.3 (z1» = i) also is new to our knowledge.

€,

_ 2, [=4Gn+22)(n—2)(n+2)(n+4)(n+14)
811,22 = +86 (n+8)3(n? + 4n + 20)2

. An+6)(n+4)

_ . 4(n* — 36)
812 =1 8)(n? + 4n 1 20)©

(n+8)(n? + 4n +20)

* —
833 =

*
813,23 = 0.

@ We consider the coupling in two loop order to obtain in order € the
region in which the couplings are real:

ne = 2 — (2€)/140 4 0(2¢)?

A. Weber (ITP, University of Heidelberg) Solutions for finite n 04.09.08 31/ 36



Solutions for finite n, Fixed Points and Critical Exponents
@ RS 2.3 (z;, = +i) The critical exponents are

. { (2n® 4 37n° + 348n* + 2360n° + 9376n% + 13904n — 9152)(2¢)?
Yo =

8(n + 8)3(n? + 4n + 20)2

N (n+2)y/=3n+22)(n — 2)(n + 2)(n + 4)(n + 14)(2€)?
8(n + 8)5/2(n2 + 4n + 20) ’

_@(n—1)(n—2)(n+6) (n+2)(2)
(n+8)(n2 +4n+20) ~ 2(n+38)

(25 )V/ 7 + 32n6 4 512n5 + 3792n* + 10064n3 — 3548n2 — 21376n + 61184
2(n + 8)3/2(n2 + 4n + 20) ’

*
Yer =

(2¢) 4 \/ —2(n® + 34n* + 31203 + 75202 — 1776n — 7648)(25)
n+8 (n + 8)3/2(n? + 4n + 20)

T (n+8)(n2+4n+20)  (n+8)(n? + 4n + 20)

(2€)(n® + 10n% — 4n — 232) (2e)\’
w= » (2€), ,
(n+ 8)(n? + 4n + 20) 2(n + 8)(n2 + 4n + 20)

(n+6)(3n + 2)(2¢) (n+ 6)(n + 14)(2¢) }

where ) is solution of the equation

A3 416(n% + 4n + 20)A'2 — 4(n + 4)(n° — 18n* — 302n° — 1648n° — 496n + 8928)\’
—16(3n + 22)(n — 2)(n + 6)(n — 6)(n + 4)(n + 2)(n + 14)> = 0.
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Solutions for finite n, Fixed Points and Critical Exponents

o RS 2.2 (z;p = ++/2) and RS 3.1 are solutions of one and the same
quadratic equation and correspond to the antichiral and chiral FP of

the O(2) x O(n) model, respectively:
3n? —2n+ 24+ s(n—6)vn? —24n—|—4

fuz = Bt 4n? — 24n 1 144
_ —n* —6n+72+ s(n+6)v/n? — 24n—&—486
g2 = m + 4n? — 24n + 144 ’
4(n* 4 n—12 — s3y/n2 — 24n + 48)
g33 = €, g1323 =0,

n +4n? — 24n + 144
where s = 41 corresponds to RS 3.1 and s = -1 to RS 2.2
@ Both fixed points are O(n)x0O(2) invariant.
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Solutions for finite n, Fixed Points and Critical Exponents

@ RS 2.2 and RS 3.1 The critical exponents are

. (5n° — 3n* — 160 — 65602 + 3072n — 1152 + s(n — 3)(n + 4)w>/2)(2¢)? o

Yo = ToN2 (@x) o s
. (n(48 + n+ n?) — s(n — 3)(4 + n)v/w)(2¢) (—2n% — 3n? + 28n — 48 + Bsny/w)(2¢)

Y = {* o ) o (ZX)} .

. (=50 — s(n — 12)y/w)(2€) (—n? + 4n — 48 — sn\/w)(2¢)
Yer = { s (2x),
2N 2N
(3n% + 8n — 96 — s(n + 12)/w)(2¢)
2N } '
Y { (n+4((n+ 4)(,11\7 3) — 35v/w) (2¢) (2. (n3 + 14n% + 56n — 96 ;\Is(n +8)(n — 6)v/W)(2€) @),

(—3(n? — 24n + 48) + s(n + 4)(n — 3)v/w)(2¢) @ )}
N N € B

where N = n3 + 4n? — 24n + 144, and w = n? — 24n + 48,
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Solutions for finite n, Fixed Points and Critical Exponents

The FP 3.1 is stable for large n.
Two loop calculation gives the range where the FPs are real:

n > 21.8 — 23.4(2¢) + O(2¢)?
n < 220 — 0.57(2¢) + O(2¢)®

The question of the range of stability in D = 3 is under debate

The 1/n expansion of the general O(n) symmetric two field model
gives in first order

~ 6I(D—2)sin(5F)
1= AT(D/2— 2)[(1 + D/2)n

. _ (2(2—D)(1— D)y 2(2— D)(3—2D)
%_(D_“)_{ 4-D = 3(4— D) n}'

Both expansions agree with each other!
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Summary and Conclusions

The general O(n) symmetric Hamiltonian has three different mass
terms. It gives rise to a variety of critical and multicritical behaviors
generalizing the O(n) 4+ O(n) and O(2) x O(n) models.

We gave the expressions for the 3 functions and the matrices 7o,
YrYer,s and w, and e o for the general O(n) model from which the
critical exponents are obtained in one-loop order (for 1 in two-loop
order).

A classification of the FPs in the large n limit was given. Two types
of FPs emerge: Four of them are invariant under O(n)x0O(2). The
other six FPs are not invariant under O(2) and yield lines of FPs.

Under the numerous FPs the corresponding FPs of the well-known
models were found.

To our best knowledge the FPs RS 2.1b and 2.3 are new. RS 2.1b
agrees with RS 2.1a, which describes two uncoupled systems, in
one-loop order.
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