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Abstract

The role of deformations in physics and mathematics lead to the
deformation philosophy promoted in mathematical physics by Flato
since the 70’s, exemplified by deformation quantization [where

quantization is realized as a deformation of the product of classical observables into a

noncommutative “star-product”] and its manifold avatars. Examples show
that in field theory, in the deformation quantization framework,
quantizations mathematically equivalent to normal ordering
(subtracting a coboundary to the cocycles leading to it) may exhibit
less divergences. It is suggested that renormalization might be
obtained by a further deformation of the normal product deformation,

subtracting infinite cocycles from those giving normal ordering, leading to a finite result.

That could be what is behind the Connes–Kreimer approach to renormalization.
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The Earth is not flat

Act 0. Antiquity (Mesopotamia, ancient Greece).
Flat disk floating in ocean, or Atlas. Similar physical assumption in (ancient) China (Φ).

Act I. Fifth century BC: Pythogoras, theoretical
astrophysicist. Pythagoras is often considered as the first mathematician; he and

his students believed that everything is related to mathematics. On aesthetic (and

democratic?) grounds he conjectured that all celestial bodies are spherical.

Act II. 3rd century BC: Aristotle, phenomenologist
astronomer. Travelers going south see southern constellations rise higher above

the horizon, and shadow of earth on moon during the partial phase of a lunar eclipse is

always circular: fits physical model of sphere for Earth.
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Eratosthenes “Experiment”

Act III. ca. 240 BC:
Eratosthenes, “experimentalist”.
Chief librarian of the Great Library in Alexandria. At summer solstice (21 June), knew

that sun (practically) at vertical in Aswan and angle of 2π
50 in Alexandria, “about” (based

on estimated average daily speed of caravans of camels?) 5000 stadions “North;”

assuming sun is point at∞ (all not quite), by simple geometry got circumference of

252000 “stadions”, 1% or 16% off correct value (Egyptian or Greek stadion). Computed

distance to sun as 804,000 kstadions and distance to moon as 780 kstadions, using

data obtained during lunar eclipses, and measured tilt of Earth’s axis 11/83 of 2π.

In China, ca. same time, different context: measure similarly distance of earth to sun

assuming earth is flat (the prevailing belief there until 17th century).
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Relativity

Paradox coming from Michelson & Morley
experiment (1887) resolved in 1905 by Einstein with special theory of
relativity. Experimental need triggered theory. In modern language: Galilean

geometrical symmetry group of Newtonian mechanics (SO(3) · R3 · R4) is deformed, in

Gerstenhaber’s sense, to Poincaré group (SO(3, 1) · R4) of special relativity. A

deformation parameter comes in, c−1, c being a new fundamental constant, velocity of

light in vacuum. Time has to be treated on same footing as space, expressed mathematically as a purely

imaginary dimension. General relativity: deform Minkowskian space-time with
nonzero pseudo-Riemannian curvature. E.g. constant curvature, de Sitter (> 0)

or AdS4 (< 0).
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Flato’s deformation philosophy

Physical theories have domain of applicability

defined by the relevant distances, velocities, energies, etc. involved. The passage from

one domain (of distances, etc.) to another doesn’t happen in an uncontrolled way:

experimental phenomena appear that cause a paradox and contradict [Fermi quote]

accepted theories. Eventually a new fundamental constant enters, the formalism is

modified: the attached structures (symmetries, observables, states, etc.) deform the

initial structure to a new structure which in the limit, when the new parameter goes to

zero, “contracts” to the previous formalism. The question is, in which category to seek

for deformations? Physics is conservative: if start with e.g. category of associative or

Lie algebras, tend to deform in same category. But there are important generalizations:

e.g. quantum groups are deformations of (some commutative) Hopf algebras.
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Epistemological remarks

Two quotes by Sir James Hopwood Jeans:

“The Great Architect of the Universe now begins to appear as a pure mathematician.”

“We may as well cut out the group theory. That is a subject that will never be of any use in physics.” [Discussing a

syllabus in 1910.] [Physicists’ liberty with rigor vs. mathematicians’ lack of physical touch.]

Spectroscopy. In atomic and molecular physics we know the forces and their

symmetries. Energy levels (spectral lines) classified by UIR (unitary irreducible representations) of SO(3) or

SU(2), and e.g. with crystals that is refined (broken) by a finite subgroup. [Racah school, Flato’s M.Sc.] The

more indirect physical measurements become, the more one has to be careful.

“Curse” of experimental sciences. Mathematical logic: if A and A −→ B, then B. In real

life, imagine model or theory A. If A −→ B and “B is nice” (e.g. verified & more), then A!

[Inspired by Kolmogorov quote.] (It ain’t necessarily so.)
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Philosophy?

Mathematics and physics are two communities separated by a
common language. In mathematics one starts with axioms and
uses logical deduction therefrom to obtain results that are absolute
truth in that framework. In physics one has to make approximations,
depending on the domain of applicability.
As in other areas, a quantitative change produces a qualitative
change. (So we should deform, not extrapolate!) Engels (i.a.) developed
that point and gave a series of examples in Science to illustrate the transformation of
quantitative change into qualitative change at critical points (see
http://www.marxists.de/science/mcgareng/engels1.htm).
That is also a problem in psychoanalysis that was tackled using Thom’s
catastrophe theory. Robert M. Galatzer-Levy, Qualitative Change from Quantitative Change:

Mathematical Catastrophe Theory in Relation to Psychoanalysis, J. Amer. Psychoanal. Assn., 26 (1978), 921–935.

Deformation theory is an algebraic mathematical way to deal
with that “catastrophic” situation, most relevant to physics.
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Classical Mechanics and around

What do we quantize?
Non trivial phase spaces→ Symplectic and Poisson manifolds.
Symplectic manifold:Differentiable manifold M with nondegenerate
closed 2-form ω on M. Necessarily dim M = 2n. Locally:
ω = ωijdx i ∧ dx j ; ωij = −ωji ; detωij 6= 0; Alt(∂iωjk ) = 0. And one can
find coordinates (qi ,pi ) so that ω is constant: ω =

∑i=n
i=1 dq i ∧ dpi .

Define πij = ω−1
ij , then {F ,G} = πij∂iF∂jG is a Poisson bracket, i.e.

the bracket {·, ·} : C∞(M)× C∞(M)→ C∞(M) is a skewsymmetric
({F ,G} = −{G,F}) bilinear map satisfying:
• Jacobi identity: {{F ,G},H}+ {{G,H},F}+ {{H,F},G} = 0
• Leibniz rule: {FG,H} = {F ,H}G + F{G,H}
Examples:1) R2n with ω =

∑i=n
i=1 dq i ∧ dpi ;

2) Cotangent bundle T ∗N, ω = dα, where α is the canonical one-form
on T ∗N (Locally, α = −pidq i )
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Poisson manifolds

Poisson manifold: Differentiable manifold M, and
skewsymmetric contravariant 2-tensor (not necessarily
nondegenerate) π =

∑
i,j π

ij∂i ∧ ∂j (locally) such that
{F ,G} = i(π)(dF ∧ dG) =

∑
i,j π

ij∂iF ∧ ∂jG is a Poisson bracket.
Examples:
1) Symplectic manifolds (dω = 0 = [π, π] ≡ Jacobi identity)
2) Lie algebra with structure constants Ck

ij and πij =
∑

k xk Ck
ij .

3) π = X ∧ Y , where (X ,Y ) are two commuting vector fields on M.
Facts : Every Poisson manifold is “foliated” by symplectic manifolds.
If π is nondegenerate, then ωij = (πij )−1 is a symplectic form.

A Classical System is a Poisson manifold (M, π) with a
distinguished smooth function, the Hamiltonian H : M → R.
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Quantization in physics

Planck and black body radiation [ca.
1900]. Bohr atom [1913]. Louis de Broglie [1924]: “wave mechanics”
(waves and particles are two manifestations of the same physical reality).

Traditional quantization
(Schrödinger, Heisenberg) of classical system (R2n, {·, ·},H): Hilbert
space H = L2(Rn) 3 ψ where acts “quantized” Hamiltonian H, energy
levels Hψ = λψ, and von Neumann representation of CCR.
Define q̂α(f )(q) = qαf (q) and p̂β(f )(q) = −i~∂f (q)

∂qβ
for f differentiable

in H. Then (CCR) [p̂α, q̂β] = i~δαβ I (α, β = 1, ...,n).
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Orderings, Weyl, Wigner

The couple (q̂, p̂) quantizes the
coordinates (q,p). A polynomial classical Hamiltonian H is quantized
once chosen an operator ordering, e.g. (Weyl) complete
symmetrization of p̂ and q̂. In general the quantization on R2n of a
function H(q,p) with inverse Fourier transform H̃(ξ, η) can be given
by (Hermann Weyl [1927] with weight $ = 1):
H 7→ H = Ω$(H) =

∫
R2n H̃(ξ, η)exp(i(p̂.ξ + q̂.η)/~)$(ξ, η)dnξdnη.

E. Wigner [1932] inverse H = (2π~)−nTr[Ω1(H) exp((ξ.p̂ + η.q̂)/i~)].
Ω1 defines an isomorphism of Hilbert spaces between L2(R2n) and Hilbert–Schmidt

operators on L2(Rn). Can extend e.g. to distributions.

Constrained systems e.g. constraints fj (p, q) = 0 (⇒ also algebraic varieties

and manifolds with corners): Dirac formalism [1950].
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Dirac quote

“... One should examine closely even the elementary and the satisfactory features of our Quantum Mechanics and

criticize them and try to modify them, because there may still be faults in them. The only way in which one can hope

to proceed on those lines is by looking at the basic features of our present Quantum Theory from all possible points

of view. Two points of view may be mathematically equivalent and you may think for that reason if you understand

one of them you need not bother about the other and can neglect it. But it may be that one point of view may

suggest a future development which another point does not suggest, and although in their present state the two

points of view are equivalent they may lead to different possibilities for the future. Therefore, I think that we cannot

afford to neglect any possible point of view for looking at Quantum Mechanics and in particular its relation to

Classical Mechanics. Any point of view which gives us any interesting feature and any novel idea should be closely

examined to see whether they suggest any modification or any way of developing the theory along new lines. A point

of view which naturally suggests itself is to examine just how close we can make the connection between Classical

and Quantum Mechanics. That is essentially a purely mathematical problem – how close can we make the

connection between an algebra of non-commutative variables and the ordinary algebra of commutative variables? In

both cases we can do addition, multiplication, division...” Dirac, The relation of Classical to Quantum Mechanics

(2nd Can. Math. Congress, Vancouver 1949). U.Toronto Press (1951) pp 10-31.
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Classical↔ Quantum correspondence

The correspondence H 7→ Ω(H) is not an
algebra homomorphism, neither for ordinary product of functions nor
for the Poisson bracket P (“Van Hove theorem”). Take two functions u1 and
u2, then (Groenewold [1946], Moyal [1949]):
Ω−1

1 (Ω1(u1)Ω1(u2)) = u1u2 + i~
2 {u1, u2}+ O(~2), and similarly for bracket.

More precisely Ω1 maps into product and bracket of operators (resp.):
u1 ∗M u2 = exp(tP)(u1, u2) = u1u2 +

∑∞
r=1

t r

r !
P r (u1, u2) (with 2t = i~),

M(u1, u2) = t−1 sinh(tP)(u1, u2) = P(u1, u2) +
∑∞

r=1
t2r

(2r+1)!
P2r+1(u1, u2)

We recognize formulas for deformations of algebras.

Deformation quantization: forget the correspondence
principle Ω and work in an autonomous manner with
“functions” on phase spaces.
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The framework

Poisson manifold (M, π), deformations of product of functions.
Inspired by deformation philosophy, based on Gerstenhaber’s deformation theory

[Flato, Lichnerowicz, Sternheimer; and Vey; mid 70’s] [Bayen, Flato, Fronsdal,

Lichnerowicz, Sternheimer, LMP ’77 & Ann. Phys. ’78]

• At = C∞(M)[[t ]], formal series in t with coefficients in C∞(M) = A.
Elements: f0 + tf1 + t2f2 + · · · (t formal parameter, not fixed scalar.)
• Star product ?t : At ×At → At ; f ?t g = fg +

∑
r≥1 t r Cr (f ,g)

- Cr are bidifferential operators null on constants: (1 ?t f = f ?t 1 = f ).
- ?t is associative and C1(f ,g)− C1(g, f ) = 2{f ,g}, so that
[f ,g]t ≡ 1

2t (f ?t g − g ?t f ) = {f ,g}+ O(t) is Lie algebra deformation.

Basic paradigm. Moyal product on R2n with the canonical Poisson bracket P:

F ?M G = exp
( i~

2 P
)
(f , g) ≡ FG +

∑
k≥1

1
k!

( i~
2

)k Pk (F ,G).
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Applications and Equivalence
Equation of motion (time τ ): dF

dτ = [H,F ]M ≡ 1
i~ (H ?M F − F ?M H)

Link with Weyl’s rule of quantization: Ω1(F ?M G) = Ω1(F )Ω1(G)

Equivalence of two star-products ?1 and ?2.
• Formal series of differential operators T (f ) = f +

∑
r≥1 t r Tr (f ).

• T (f ?1 g) = T (f ) ?2 T (g).

For symplectic manifolds, equivalence classes of star-products are parametrized by the

2nd de Rham cohomology space H2
dR(M): {?t}/ ∼ = H2

dR(M)[[t]] (Nest-Tsygan [1995]

and others). In particular, H2
dR(R2n) is trivial, all deformations are equivalent.

Kontsevich: {Equivalence classes of star-products} ≡ {equivalence
classes of formal Poisson tensors πt = π + tπ1 + · · · }.
Remarks:
- The choice of a star-product fixes a quantization rule.
- Operator orderings can be implemented by good choices of T (or $).

- On R2n, all star-products are equivalent to Moyal product (cf. von Neumann

uniqueness theorem on projective UIR of CCR).

Daniel Sternheimer JINR Dubna, ShirkovFest RG 2008



Overview
Deformations

Quantization is deformation
QFT and Cohomological renormalization

Background
Classical limit and around
Deformation quantization

Existence and Classification

Let (M, π) be a Poisson manifold. f ?̃g = fg + t{f ,g} does not define
an associative product. But (f ?̃g)?̃h − f ?̃(g?̃h) = O(t2).
Is it always possible to modify ?̃ in order to get an associative product?

Existence, symplectic case:
– DeWilde-Lecomte [1982]: Glue local Moyal products.
– Omori-Maeda-Yoshioka [1991]: Weyl bundle and glueing.
– Fedosov [1985,1994]: Construct a flat abelian connection on the
Weyl bundle over the symplectic manifold.
General Poisson manifold M with Poisson bracket P:
Solved by Kontsevich [1997, LMP 2003]. “Explicit” local formula:
(f ,g) 7→ f ? g =

∑
n≥0 tn∑

Γ∈Gn,2
w(Γ)BΓ(f ,g), defines a differential

star-product on (Rd ,P); globalizable to M. Here Gn,2 is a set of graphs Γ,

w(Γ) some weight defined by Γ and BΓ(f , g) some bidifferential operators.

Particular case of Formality Theorem. Operadic approach

Daniel Sternheimer JINR Dubna, ShirkovFest RG 2008



Overview
Deformations

Quantization is deformation
QFT and Cohomological renormalization

Background
Classical limit and around
Deformation quantization

This is Quantization

A star-product provides an autonomous quantization of a manifold M.
BFFLS ’78: Quantization is a deformation of the composition law of
observables of a classical system: (A, ·)→ (A[[t ]], ?t ), A = C∞(M).

Star-product ? (t = i
2~) on Poisson manifold M and Hamiltonian H;

introduce the star-exponential: Exp?( τH
i~ ) =

∑
r≥0

1
r ! ( τi~ )r H?r .

Corresponds to the unitary evolution operator, is a singular object i.e. belongs not to

the quantized algebra (A[[t]], ?) but to (A[[t , t−1]], ?). Singularity at origin of its trace,

Harish Chandra character for UIR of semi-simple Lie groups.

Spectrum and states are given by a spectral (Fourier-Stieltjes in the
time τ ) decomposition of the star-exponential.

Paradigm: Harmonic oscillator H = 1
2 (p2 + q2), Moyal product on R2`.

Exp?
(
τH
i~
)

=
(

cos( τ2 )
)−1 exp

( 2H
i~ tan( τ2 )

)
=
∑∞

n=0 exp
(
− i(n + `

2 )τ
)
π`n.

Here (` = 1 but similar formulas for ` ≥ 1, Ln is Laguerre polynomial of degree n)

π1
n(q, p) = 2 exp

(−2H(q,p)
~

)
(−1)nLn

( 4H(q,p)
~

)
.
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Complements

The Gaussian function π0(q,p) = 2 exp
(−2H(q,p)

~
)

describes the
vacuum state. As expected the energy levels of H are En = ~(n + `

2 ):
H ? πn = Enπn; πm ? πn = δmnπn;

∑
n πn = 1. With normal ordering,

En = n~: E0 −→∞ for ` −→∞ in Moyal ordering but E0 ≡ 0 in normal
ordering, preferred in Field Theory.
• Other standard examples of QM can be quantized in an
autonomous manner by choosing adapted star-products: angular
momentum with spectrum n(n + (`− 2))~2 for the Casimir element of
so(`); hydrogen atom with H = 1

2 p2 − |q|−1 on M = T ∗S3,
E = 1

2 (n + 1)−2~−2 for the discrete spectrum, and E ∈ R+ for the
continuous spectrum; etc.

• Feynman Path Integral (PI) is, for Moyal, Fourier transform in p of
star-exponential; equal to it (up to multiplicative factor) for normal ordering)
[Dito’90]. Cattaneo-Felder [2k]: Kontsevich star product as PI.
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Overview

The deformation quantization of a given classical field theory consists in
giving a proper definition for a star-product on the infinite-dimensional
manifold of initial data for the classical field equation and constructing with it,
as rigorously as possible, whatever physical expressions are needed.
As in other approaches to field theory, here also one faces serious
divergence difficulties as soon as one is considering interacting fields theory,
and even at the free field level if one wants a mathematically rigorous theory.
But the philosophy in dealing with the divergences is significantly different
and one is in position to take advantage of the cohomological features of
deformation theory to perform what can be called cohomological
renormalization.

In the same way as we quantize by deforming the (commutative) product of
observables to an ~-dependent star product, keeping the classical
observables unchanged, the idea is to renormalize by deforming the normal
star-product to another, coupling constant dependent, quantization.
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Poisson structure and field equations

Poisson structures are known on infinite-dimensional manifolds since a long time; there
is an extensive literature on this subject. A typical structure, for our purpose, is a weak
symplectic structure such as that defined in 1974 by Segal and by Kostant on the space
of solutions of a classical field equation like �Φ = F (Φ), � = d’Alembertian. Now for
scalar-valued functionals Ψ over such a space, i.e., over the phase space of initial
conditions ϕ(x) = Φ(x , 0) and π(x) = ∂

∂t Φ(x , 0), a Poisson bracket can be defined by

P(Ψ1,Ψ2) =

∫ (
δΨ1

δϕ

δΨ2

δπ
−
δΨ1

δπ

δΨ2

δϕ

)
dx (1)

δ being the functional derivative. But while one can give a precise mathematical
meaning to (1) by specifying an appropriate algebra of functionals, the formal extension
to powers of P, needed to define the Moyal bracket, is highly divergent, already for P2.

This is no surprise to physicists who know that the correct approach to field theory

starts with normal ordering, and that there are infinitely many inequivalent

representations of the canonical commutation relations, even if in recent physical

literature some are working formally with Moyal product.
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The idea of cohomological renormalization in deformation quantization

Starting with some star-product ? (e.g. similar to the normal star-product on a manifold
of initial data), we would like to interpret various divergences appearing in the theory in
terms of coboundaries (or cocycles) for the relevant Hochschild cohomology. If we
suspect that a term in a cochain of the product ? is responsible for the appearance of
divergences, applying an iterative procedure of equivalence, we can try to eliminate it,
or at least get a lesser divergence, by subtracting at the relevant order a divergent
coboundary; we would then get a better theory with a new star-product, “equivalent” to
the original one.
Furthermore, since in this case we expect to have at each order an infinity of non
equivalent star-products, we can try to subtract a cocycle and then pass to a
nonequivalent star-product whose lower order cochains are identical to those of the
original one. We would then make an analysis of the divergences up to order ~r ,
identify a divergent cocycle, remove it, and continue the procedure (at the same or
hopefully a higher order).
Along the way one should preserve the usual properties of a quantum field theory
(Poincaré covariance, locality, etc.) and the construction of adapted star-products
should be done accordingly. The complete implementation of this program should lead
to a cohomological approach to renormalization theory.

It seems (e.g. looking at the formulas in Connes 2005 lectures at Collège de France)

that the Connes–Kreimer rigorous renormalization procedure could fit in this pattern.
Daniel Sternheimer JINR Dubna, ShirkovFest RG 2008
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Normal star-product and quantized fields
Let Φ be a (classical) free massive scalar field with initial data (ϕ, π) in the Schwartz
space S. Replace them by their Fourier modes (ā, a), also in S seen as a real vector
space. After quantization (ā, a) become the usual creation and annihilation operators.
The normal star-product ?N can be written
(F ?N G)(ā, a) =

∫
S′⊕S′ dµ(ξ̄, ξ)F (ā, a + ξ)G(ā + ξ̄, a) where µ is the Gaussian

measure on S′ ⊕ S′ and F ,G are holomorphic functions with semi-regular kernels.

Creation and annihilation operators being operator-valued distributions, we take

(ā, a) ∈ S′ ⊕ S′ (the distribution aspect is present in the definition of the cochains of

the star-product). Fermionic fields can also be cast in that framework.
For the above normal product one can formally consider interacting fields. The
star-exponential of the Hamiltonian turns out to be, up to a multiplicative well-defined
function, equal to Feynman’s path integral. For free fields, we have a mathematically
meaningful equality between the star-exponential and the path integrals as both of
them are defined by a Gaussian measure, hence well-defined. In the interacting fields
case, giving a rigorous meaning to either of them would give a meaning to the other.

Work in that direction (free scalar fields, Klein–Gordon equation etc.) is done by Dito

since the 90’s, including an example of cancellation of some infinities in λϕ4
2-theory via

a λ-dependent star-product formally equivalent to normal.
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A toy model of cohomological renormalization

Take a λϕ4
2 interacting Hamiltonian H[ϕ, π] = H0[ϕ, π] + λV [ϕ] with

H0 = 1
2

∫
R(π2(x) + |∇ϕ(x)|2 + m2ϕ2(x))dx , V [ϕ] =

∫
R ϕ

4(x)dx or its equivalent form
with (ā, a). Singular terms appear in the ?N -powers of H, not surprising since
(Glimm–Jaffe) one needs an infinite renormalization of H in order to give a meaning to
the operator expression of H.

We would like to leave H unchanged and define a new ?-product such that no singular

terms occur in the ?-powers of H and, ultimately, that the ?-exponential of H is well

defined. Dito (LMP 1993) constructed a ?-product equivalent to normal which gives a

meaning to H ? F (H), F an arbitrary polynomial function of H. The equivalence

operator T , T (F ? G) = TF ?N TG, is given by an expression

T (F ) = exp ~λ
∫

dkf (k)[ δ2F
δa(k)δa(k)

− δ2F
δā(k)δā(k)

where f is a function adjusted in such a

way to generate a counterterm for C4(H,H), the only singular term in H ?N H leading

to an infinite constant. It however does not give divergenceless expressions for the

?-powers of H with n ≥ 3 because these are not polynomials in H.

Daniel Sternheimer JINR Dubna, ShirkovFest RG 2008
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