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New type of self-organization
on 

complex networks



PROBLEM

We  consider a critical dynamics of a very specific system on 
complex networks. The system under consideration is closed. It 
has two thresholds for the main dynamical variable z and the 
total value of z is conserved and equal to zero. 

The question is:

Does such a system demonstrate the self-organized behavior or 
not?



PHYSICAL ANALOG
The physical prototype of our system is discrete superconductor 
(SQUID) placed in external magnetic field.
1. The  junction current in superconductor has two threshold 
values: positive and negative ones.
2. It is clear that the total current induced  by an external 
magnetic field is equal to zero. However the formation of sets of 
junctions with positive and negative currents is not forbidden.
3. Positive and negative currents can annihilate with each other.
4. For discrete superconductor the closed boundary conditions are 
natural. 



Scale-free network
1ik =

2ik =

At each time step a new node  
attaches to one (or more) of 
existing nodes by m links.

Network  is a set of nodes 
connected by links.

(degree) is a number of links 
for i-th node

CONSTRUCTION PROCESS

ATTACHMENT RULES
What is a linear preferential
attachment?

ik



LINEAR PREFERENTIAL 
ATTACHMENT

)2/(),( tktkf =

Nodes for linking are chosen with probability proportional to a 
special function f(k). Lets this function is linear, for example:

If we use LPA that the probability for node to have k links is 
described by following formula:

Such a type of attachment is linear preferential one (LPA). 
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-exact solution

-continuous approximation

We see that  scale-free networks are generated with linear
preferential attachment.



PROBABILITY FUNCTION P(k)
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PROBABILITY FUNCTION P(k)

f(k) = 4/( k * (k + 1) * (k + 2) ) 
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COMPUTER  SIMULATIONS. 
ALGORITHM

0. Using LPA we generate the network with size N=10 000 and with 
prefixed value of m (m is number of links owned to node at
the moment of its birth).  We numbered the nodes in order 
of theirs birth. Dynamics on the network is described by following rules:
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Index i denotes nodes linked with n-th node . Kn is 
the number of nodes connected  with n-th node.

This algorithm is a result of reduction of equations
describing a phases dynamics in discrete superconductors 



RESULTS. NETWORK 
(ILLUSTRATION)

Fragments of networks with m=1 and m=2. In the case of m=1
we have “tree” without loops, and in the case of m>1 there are 
closed passes on the network. 

m=2m=1



ALGORITHM. ILLUSTRATION
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REDISTRIBUTION PROCESS



ALGORITHM. ILLUSTRATION
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Two types of annihilation process:
1. Positive and negative units topple to the same node. The value of z 

on this node fluctuates around zero.
2. Positive or negative unit comes to node with large value of |z|. 
It leads to decreasing of |z|.



COMPUTER SIMULATION PROCESS

h∆+

1. The system under consideration is perturbed at the 
boundary. We define the boundary of our network as a group 
of nodes where k=m  (k is a node degree, m is a number of 
links owned to the node in the moment of its birth). We  
divide the boundary of network into two subset: “positive” 
and “negative”. Before every perturbation  we choose 
(randomly and independently) one node from each  subset. We 
add            to the node from “positive” subset and          to 
the node from “negative” subset. 

Note, that  the fraction of boundary nodes is great enough. For 
example, if  m=1 that the number of nodes m=k is 2/3 of total 
amount of network nodes.

2. After perturbation the system is allowed to relax to a stable 
state where all |z|<zc. When the dynamics stops we perturb 
the system again.
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RESULTS. CRITICAL STATE

After transition period the system under consideration reaches 
a critical state. This state consists of a large number of 
metastable states that have the same structure. Each 
metastable state is a collection of the steady sets of 
nodes where values of z are closed to positive or 
negative threshold. During the system evolution the values 
of z fluctuate. The system comes from one metastable state 
to another by means of avalanches launched by 
perturbations. Positive and negative variables can annihilate 
with each other and this process successfully 
substitutes the outlet process.



CRITICAL STATE (illustration)



RESULTS. AVALANCHES IN THE 
SYSTEM

The system migrates from one metastable state to another by 
means of avalanches. During the avalanche the value of z on  
any node can change due to  the toppling of this node or its 
neighbors. We calculate a size of an avalanche as a total 
number of toppling events during the relaxation process and 
normalize obtained quantity on size of the network 
(N=10000).

We study the distribution function of avalanche sizes for 
N=10000 and             . Dependence of this function on the  
value of m is also investigated. We attempt to approximate 
obtained data by power-law function in order to understand if 
the self-organized criticality realizes in our system or not. 
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RESULTS. AVALANCHE STATISTICS
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We consider the networks  with m=1 and m=2.  In these cases the 
distribution functions for avalanche sizes are studied. The data
obtained can be approximated by function:

Why we don’t observe a power-law distribution relevant to self-
organized criticality? It can be explain by the fact that the 
annihilation process  occurs on a large number of nodes. It was shown
earlier that the amount of sites where the outlet process takes place
affects on the form of distribution function for avalanche sizes. 
The increasing of  this number leads to deviation of distribution 
function from power-law dependence. However we don’t consider 
this fact as a loss of self-organization. The systems remains critical 
and demonstrates an avalanche-like dynamics. We call such a state 
as a new type of  self-organization.





AVALANCHE DISTRIBUTION
(illustration)



AVALANCHE DISTRIBUTION
(illustration)



Distribution function depends on 
value of m

The shape of distribution function for m=1 differs from ones for other
values of m. The reason is the absence of loops in the system 
for m=1.



RESUME:
1. Critical state in the system under consideration is the self-organized 
one in the following sense. It is a set of metastable states. The 
structures of all metastable states are the same. Each of them is 
a collection of sets of nodes where  the values of node variables z 
are  closed to positive or negative threshold. During 
its evolution the system migrates from one metastable state to another 
by means of avalanche process. During the avalanche the values of z 
fluctuate.
2. The  distribution function for avalanche sizes can be approximated by
following dependence: 

3.Avalanche distributions for networks with m=1 and m>1 are 
crucially different. It is a result of network structure. 
In the case of m=1 we have a tree-like networks without loops, 
but for  m>1 there are cycles on the network.
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