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Plan
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1. Logarithmic scaling
another (generalized) way to realize scale invariance

2. Logarithmic CFT
field theoretic realization of this new form of scaling

Bottom line:

scaling becomes non-diagonalizable !



History
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Logarithmic scaling is not really new: (about) first appearance in
polymers and percolation (Saleur ’92), but first systematic study of
logCFT by Gurarie in ’93.

Since then, they have played a prominent role in many topics:

• percolation

• polymers

• WZW models

• 2d turbulence

• disordered systems

• sandpile models

• spanning trees

• quantum Hall effect

• string theory

• dimer models

• logarithmic minimal models

• W-algebras ...



RG transformations
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Depends on rescaling parameter b,

K ′ = Rb(K) with fixed point K∗ = Rb(K
∗).

Linearization around K∗ yields

K ′

α −K
∗

α =
∑

β

Lαβ (Kβ −K
∗

β).

If L is diagonalizable, we form scaling variables (eigenvectors)

ui =
∑

α

cαi (Kα −K
∗

α) =⇒ u′i = λiui λi = λi(b)

Semi-group property L(b)L(b′) = L(bb′) implies λi = byi . The
exponents are directly related to the critical exponents.



Scaling operators
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Scaling operators couple to scaling variables

H =
∑

i

ui φi =
∑

i

ui

∑

~r

φi(~r) ∼
∑

i

ui

∫

d~r φi(~r)

Invariance of H requires that under r → r′ = r/b, they transform as

φi(r)
RG
−→ φ′

i(r
′) = bd−yi φi(r/b)

Set xi = d− yi the scaling dimension of φi.

Scaling (and translation) invariance implies that correlators obey

〈φi(r1)φj(r2)〉 = b−xi−xj 〈φi(r1/b)φj(r2/b)〉 =
aij

|r1 − r2|xi+xj
.

Power laws, (and more) well accounted for by ordinary CFTs.



Conformal symmetry
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Note that previous correlator is also invariant under special conformal

r′ =
r + a r2

1 + 2a · r + a2 r2
,

provided

φi(r) −→
∣

∣

∣

Dr′

Dr

∣

∣

∣

xi/d

φi(r
′) = (1 + 2a · r + a2 r2)−xi φi(r

′) .

With rotations, these transformations form the global conformal group
SO(d+ 1, 1) (Euclidean).

In d = 2, this global invariance can be supplemented with local
conformal covariance, leading to CFTs. Then φ above is primary field.



So far
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Scale transformations r → r/b are ‘diagonalized’ :

� Scaling variables transform multiplicatively

u′i = byi ui

� Conjugate operators transform homogeneously

φ′

i(r
′) = bxi φi(r/b)

� Assuming local conformal symmetry, higher correlators can be
computed, and have algebraic singularities only.



Question is ...
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What happens if linearized RG transformations

are no longer diagonalizable ??



Jordan ...
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Natural to think of Jordan blocks for degenerate eigenvalues:

canonical form is

(

λ 1
0 λ

)

for rank 2.

Assume two scaling variables have same eigenvalue and transform
non-diagonally (in the Jordan way).
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Natural to think of Jordan blocks for degenerate eigenvalues:

canonical form is

(

λ 1
0 λ

)

for rank 2.

Assume two scaling variables have same eigenvalue and transform
non-diagonally (in the Jordan way).

Under linear RG transformations, we write
(

v′

u′

)

=

(

by ∗
0 by

) (

v
u

)

= by
(

1 f(b)
0 1

) (

v
u

)

RG composition law requires f(b) + f(b′) = f(bb′), namely

f(b) = A log b



Logarithmic scaling
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Non-diagonal scaling for two degenerate scaling variables takes the
logarithmic form

(

v′

u′

)

= by
(

1 A log b
0 1

) (

v
u

)

with a rank 2 Jordan cell.



Logarithmic scaling
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Non-diagonal scaling for two degenerate scaling variables takes the
logarithmic form

(

v′

u′

)

= by
(

1 A log b
0 1

) (

v
u

)

with a rank 2 Jordan cell.

Hamiltonian containing operators coupling to u, v

H = u

∫

dr φ(r) + v

∫

dr ψ(r) + . . .

is invariant provided
(

ψ′

φ′

)

= bx
(

1 −A log b
0 1

) (

ψ
φ

)



Consequences on correlators
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Scaling form for 2-pt correlators 〈φφ〉, 〈φψ〉, 〈ψ ψ〉 ?
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Scaling form for 2-pt correlators 〈φφ〉, 〈φψ〉, 〈ψ ψ〉 ?

Invariance under non-diagonal scale transformations determines
completely the three correlators (A fixed to 1)

〈φ(r1)φ(r2)〉 =
a

|r1 − r2|2x
,
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Scaling form for 2-pt correlators 〈φφ〉, 〈φψ〉, 〈ψ ψ〉 ?

Invariance under non-diagonal scale transformations determines
completely the three correlators (A fixed to 1)

〈φ(r1)φ(r2)〉 =
a

|r1 − r2|2x
,

〈φ(r1)ψ(r2)〉 = b−2x
{

〈φ(r1/b)ψ(r2/b)〉+ 〈φ(r1/b)φ(r2/b)〉 log b
}

= b−2x 〈φ(r1/b)ψ(r2/b)〉+
a

|r1 − r2|2x
log b
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Consequences on correlators
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Scaling form for 2-pt correlators 〈φφ〉, 〈φψ〉, 〈ψ ψ〉 ?

Invariance under non-diagonal scale transformations determines
completely the three correlators (A fixed to 1)

〈φ(r1)φ(r2)〉 =
a

|r1 − r2|2x
,

〈φ(r1)ψ(r2)〉 =
a′ − a log |r1 − r2|

|r1 − r2|2x
,

〈ψ(r1)ψ(r2)〉 =
a′′ − 2a′ log |r1 − r2|+ a log2 |r1 − r2|

|r1 − r2|2x
,

Now contain logarithmic singularities !

Forms dictated by translation (L−1) and scale invariance (L0) only. Not
conformally invariant yet ...



Under conformal transformations
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If we assume invariance under special conformal transformations (L1), it
implies a = 0 in the previous formulas, which simplify to

〈φ(r1)φ(r2)〉 = 0 ←− true for n-pt !!

〈φ(r1)ψ(r2)〉 =
a′

|r1 − r2|2x

〈ψ(r1)ψ(r2)〉 =
a′′ − 2a′ log |r1 − r2|

|r1 − r2|2x

The log2 r term disappears.

Generic 2-pt functions in LogCFT for pair of fields transforming in the
Jordan way: the fields (φ, ψ) make up a logarithmic pair; φ is the
primary field, ψ is the logarithmic partner of φ.



Higher rank
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Easily generalized to higher rank cells. F.i. the rank 3 case





w′

v′

u′



 = by





1 A1 log b A1A2

2
log2 b+ A3 log b

0 1 A2 log b
0 0 1









w
v
u





involves log b and log2 b terms.

In general, rank r Jordan cells lead to

• log b terms to maximal power r − 1 in RG transformations,

• log |r1 − r2| terms to maximal power r − 1 in 2-pt functions,

• n-pt correlator of primary partner 〈φ(r1) . . . φ(rn)〉 = 0.



Summary
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Usually (no log)

Diagonal scaling ⇔ RG transformations diagonalizable

Homogeneous transfos for scaling parameters ui (and byi)

Tensorial transfos for scaling operators −→ power laws

Realized by CFTs in the continuum (local scale inv/cov in d = 2)

Jordan cells

Logarithmic scaling ⇔ RG no longer diagonalizable

Inhomogeneous transfos for scaling parameters ui with log b factors

Inhomogeneous transfos for scaling operators → power laws + logs

Principles of local scale inv −→ LogCFTs (more complicated)



Example
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Simplest and most studied LogCFT.

S =
1

π

∫

∂θ∂̄θ̃ (symplectic fermions)

• θ and θ̃ are scalar, anticomm. fields, with canonical dimension 0
−→ four fields I, θ, θ̃, ω =: θ̃θ : of dimension 0, two are bosonic

• Wick contraction θ(z, z̄) θ̃(w, w̄) = − log |z − w|

• stress-energy tensor T (z) = −2 :∂θ ∂θ̃ :

• Virasoro algebra has central charge c = −2

• may be thought of as minimal model (p, p′) = (1, 2), c = 1− 6(p−p′)2

pp′



Jordan cell
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The identity I and ω = :θθ̃ : form a logarithmic pair with x = 0.

From OPE T (z)ω(w), one finds, under infinitesimal dilation,

L0I = 0 , L0ω = I

Likewise, φ = ∂∂̄(θ̃θ) and ψ = θ̃θ ∂∂̄(θ̃θ) form another logarithmic pair
with x = 2

L0φ = φ , L0ψ = ψ + φ

Each of these pairs (+ many more) generates an indecomposable

representation of the Virasoro algebra (because of Jordan cell).



Correlators ?
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Can we understand the structure of 2-pt functions ?

〈φ(r1)φ(r2)〉 = 0, ←− true for n-pt !!

〈φ(r1)ψ(r2)〉 =
a′

|r1 − r2|2x
, 〈ψ(r1)ψ(r2)〉 =

a′′ − 2a′ log |r1 − r2|

|r1 − r2|2x
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Can we understand the structure of 2-pt functions ?

〈φ(r1)φ(r2)〉 = 0, ←− true for n-pt !!

〈φ(r1)ψ(r2)〉 =
a′

|r1 − r2|2x
, 〈ψ(r1)ψ(r2)〉 =

a′′ − 2a′ log |r1 − r2|

|r1 − r2|2x

Because of zero modes of θ, θ̃ (remember
∫

dθ0 = 0)

〈 I 〉 = 0 [and also 〈φ(1)φ(2) . . .〉 = 0 for φ = ∂∂̄(θ̃θ)]

However since
∫

dθ0 θ0 = 1, one has

〈ω(z)〉 = 〈θ̃θ〉 = 1, 〈ω(z)ω(w)〉 = −2 log |z − w|.

Exactly match above formulae for x = 0 !



CFTs vs Log CFTs
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Usual features of rational CFTs:

1. finite number of Virasoro representations

2. Vir representations are highest weight, completely reducible

3. Vir representations mainly identified by a conformal weight
(L0 diagonalizable)

4. conformal weights are bounded below

5. full, non-chiral theory basically reduces to chiral parts

6. correlation functions only have algebraic singularities

7. finite fusion (or quasi-rational)

8. chiral characters transform linearly under modular group of torus



CFTs vs Log CFTs
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Typical features of Log CFTs:

1. finite number of Virasoro representations NO

2. Vir representations are highest weight, completely reducible NO

3. Vir representations mainly identified by a conformal weight NO
(L0 diagonalizable)

4. conformal weights are bounded below YES

5. full, non-chiral theory basically reduces to chiral parts NO

6. correlation functions only have algebraic singularities NO, Logk

7. finite fusion (or quasi-rational) YES

8. chiral characters transform linearly under modular group NO



Recent developments

RG2008 – Dubna – Sept 08 19

� Many highly non-trivial checks of Log CFT in sandpile model (Jeng,
Grigorev, Mahieu, Moghimi-Araghi, Poghosyan, Priezzhev, Piroux,
Rajabpour, Rouhani, PR, ... 2001-2008)

� Infinite series of lattice models: logarithmic extension of minimal
models (p, p′); log Ising model, ... (Pearce, Rasmussen, Zuber 2006)

� percolation might involve rank 3 Jordan cells (Rasmussen & Pearce
2007); see Saleur & Read 2007, Mathieu & Ridout 2007 for
alternatives.

� abstract Log CFTs: check Flohr, Feigin, Fuchs, Gaberdiel,
Gainutdinov, Kausch, Runkel, Semikhatov, Tipunin, ... 2003-2008

and yet, many open questions ...
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