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ANALYTIC APPROACH TO QCD

The relevant dispersion relation provides definite analytic

properties in a kinematic variable of a quantity in hand.

BASIC IDEA

perturbation theory + RG method + analytic properties in Q?

QED Redmond, Uretsky (1958); Bogoliubov, Logunov, Shirkov (1959).

QCD D.V. Shirkov and I.L. Solovtsov, Phys. Rev. Lett. 79, 1209 (1997).

Advantages:
e no unphysical singularities e no free parameters
e mild scheme dependence e higher loop stability




ADLER FUNCTION

Hadronic vacuum polarization func- q q
tion II(¢%) plays a crucial role in var-
ious issues of elementary particle
physics. Indeed, the theoretical description of some strong
interaction processes and hadronic contributions to elec-

troweak observables is inherently based on I1(¢?):
e electron—positron annihilation into hadrons

e hadronic 7 lepton decay

¢ muon anomalous magnetic moment

e running of the electromagnetic coupling
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[
[' denotes a final hadron state, and J,, = Zf Qr:qvuq: stands

for the electromagnetic quark current.

It is worth stressing that A, (¢*) exists only for ¢° > 4m2,

since otherwise no hadron state I' could be excited:

B R.P. Feynman (1972); S.L. Adler, PRD10 (1974).




The hadronic tensor can be represented as A, = 2ImlIl,,

[ (q°) = Z/ O T{ Ju() Jo(0)}]0) d'x = (gugy — guwg ) (G").

The hadronic vacuum polarization function H(qZ) satisfies
the once—subtracted dispersion relation (cut for ¢° > 4m2)
1) =1 - (@ —a) [ —
q)=11\q)) — 49 — 9
im2 (5 = ¢*)(s — qp)
where m; = 135MeV is the mass of the m meson and R(s)

ds,

denotes the measurable ratio of two cross—sections:

R(s) = L lim {H(s —1e) — (s + zg)} =
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It is worth noting here that R(s) = 0 for s < 4m- because of

the kinematic restrictions mentioned above:

B R.P. Feynman (1972).




For practical purposes it is convenient .,
to deal with the Adler function
dT(—Q?
D(Q2) — ( 9 )7
dln ()
which satisfies the dispersion relation |
> R(s)
DO2) — O2 /
<Q ) “ 4m2 (5 T Q2)2
and plays an indispensable role for the congruous process-
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ing of the timelike and spacelike experimental data:

B S.L. Adler (1974); A. De Rujula, H. Georgi, PRD13 (1976); J.D. Bjorken (1989).

The inverse relation between D(Q?) and R(s) reads
1 S—1E d
R(s) = — lim !/( l)(——@)'—fg
271 e—04 S+ie C

B A.V. Radyushkin (1982); N.V. Krasnikov, A.A. Pivovarov, PLB116 (1982).
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On the one hand, perturba-

tion theory provides an ex-

plicit expression for the Adler
function valid at high energies

(an overall factor N} ¢ Q? is

omitted throughout):
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On the other hand, this perturbative approximation is in-
consistent with the dispersion relation for D(Q?) due to un-
physical singularities of the strong running coupling @S(QZ):
A 1
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where d; =1/m and Gy = 11 — 2n¢/3.




Dispersion relation imposes

D(Q?%) = @ A :2 7 f<;)2>2ds

stringent constraints on D(Q?):

@® Since R(s) assumes finite values and R(s) — const when
s — 00, then D(Q?) =0 at Q? =0 (holds for m, # 0 only)

@® Adler function possesses the only cut Q? < —4m72r along

the negative semiaxis of real (?

PRIMARY OBJECTIVE: to merge these nonperturbative

constraints with perturbative result for the Adler function.




NEW INTEGRAL REPRESENTATION FOR D(Q?)

This objective can be achieved by deriving the integral rep-
resentations for the Adler function and R(s)-ratio, which

involve the common spectral function.

Q°) = Q/ 5+Q2) ds /x

Rl = 5=t [ D=0

27TZ 8—>0+ S+ie C

Parton model prediction + kinematic restriction on R(s):

2
Rils) =0(s—im2) <> Do(@) =gy

B R.P. Feynman (1972).
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B A.V. Nesterenko, J. Papavassiliou, JPG32 (2006).




Thus one arrives at the following integral representations:

D(Q%) = o [1 +[jo (o) T= dmy dU]

Q%+ Am2 2 0+Q7 o
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B A.V. Nesterenko, J. Papavassiliou, JPG32 (2006).

e nonperturbative constraints on D(Q?) are satisfied

e congruent analysis of spacelike and timelike processes

In the limit m,; = 0 the obtained expressions become iden-

tical to those of the Analytic perturbation theory:

B D.V. Shirkov, I.L. Solovtsov, PRL79 (1997); PLB442 (1998); TMP150 (2007).
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There is no unique way to .

compute the corresponding :

e~

spectral density by making ol-----. 7 ...

use of perturbative Dpert(QQ).
In what follows the one-loop os}
spectral function is adopted:
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o) n?o + 72

B A.V. Nesterenko, PRD62 (2000); PRD64 (2001).

ADVANTAGES:

e unphysical perturbative singularities are eliminated
e additional parameters are not introduced

e reasonable agreement with Dexp(Q2) for all energies
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INCLUSIVE 7 LEPTON DECAY

The inclusive semileptonic branching ratio:

['(r™ — hadrons™ v;)

Ry = — RT,V + RT,A + R’r,s-

(77 — e Vevy)
Its nonstrange part associated with vector quark currents:
Ne
Rry == Vaad|*Sew (Agop + Oy ) = 1.764 + 0.016

B OPAL Collaboration, EPJC7 (1999).

In this equation N, =3, |Vuq| = 0.9738 & 0.0005, 4., = 0.0010,
Sew = 1.0194 £ 0.0050, M, = 1.777 GeV, and

M2 2
T S S ds
AQCD:Q/O (1——72> <1+2—TZ)R(5)—TQ.
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Perturbative approach:

Agop = 1 +dia)(MZ) —» A= (678+£55)MeV, ny=2

B E. Braaten, S. Narison, A. Pich, NPB373 (1992).

Current analysis:

4 1
Agep = 1+ dialV(M2) — 61 ta / F(©)pM(EM2)de — dyopall (m?),
X
2
3 2 mp 1
T T
o0
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e massive case: A = (941 4+ 86) MeV
e massless limit: A = (493 £ 56) MeV
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SUMMARY

e New integral representations for the Adler function and

R(s)-ratio are derived

e These representations possess appealing features:

« unphysical perturbative singularities are eliminated

e additional parameters are not introduced

. the m°—terms are automatically taken into account

e reasonable description of D(Qz) in entire energy range

e The effects due to the pion mass play a substantial role

in processing the data on the inclusive 7 lepton decay
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APT <+ relativistic quark

mass threshold resummation:

1.5 .
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K.A. Milton, I.L. Solovtsov,
O.P. Solovtsova (2001)—(2006)

APT 4+ vector meson

dominance assumption:
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G. Cvetic, C. Valenzuela,
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