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Introduction

Effective field theory of QCD at low energies

E<<M,
—_—

Lqcp Letr

» Expressed in physical hadron fields
» Exploits the chiral symmetry of QCD for massless quarks

» Spontaneous symmetry breaking gives Goldstone bosons

SU(2) = pions
SU(3) = pions, kaons, eta

» Includes external currents

> Quantum field theory with L.& is non-renormalizable =—> requires
the counterterms with highest derivatives

» The coefficients called Low Energy Constants LECs are not fixed by
chiral symmetry
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Introduction

>

Calculations with L. give an expansion in quark masses and external
momenta

Chiral perturbation theory (ChPT) ‘

Gasser, Leutwyler 1984,1985

ChPT exploits systematically quark mass dependence at low—energies

Two options for strange quark

- Treat ms on same footing as heavy quarks 2 flavor ChPT
- Treat mgSs as perturbation 3 flavor ChPT

The degrees of K and 7 freeze for

|p2| < IV|2K ) my, mg < mg

In this limit: relations among the 2 flavor vs. the 3 flavor low—energy
constants of the effective Lagrangians.

These relations give additional information on the values of the
low—energy constants.



Introduction

» The procedure of findings the relations between SU(2) and

SU(3) LEGs is called as "matching”.

» The matching at one-loop level has been done by Gasser and
Leutwyler in 1985.

» The aim of our research is to perform the matching at
two-loop level.



Effective Lagrangians

Leg = Lo+Ls+Le+...

U € SU(n) contains the Goldstone fields.
LECs li, ¢; and L;, C; are not fixed by chiral symmetry. Local monomials
Ki, Pi and X;, Y; are known.

Gasser, Leutwyler 1984,1985; Bijnens, Colangelo,Ecker 1999



Effective Lagrangians

Leg = Lo+Ls+Le+...
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Effective Lagrangians

Leﬂ'
SuU
L5732

SU,
L,

SUs
L 2

SUs3g
L,

Lo+La+Le+...

FZ

7 (D.UD U + MU 4UY)Y,  M?=(m,+mq)B,
10 56

ZhKh £372 = ZCiPi-

i=1 i=1

Fo

72 (DUD*UT + My(U +U")), MG = (my + ma + ms)Bo,

12 94
> X, LgUe =) GYi.
i=1 i=1

U € SU(n) contains the Goldstone fields.
LECs li, ¢; and L;, C; are not fixed by chiral symmetry. Local monomials
Ki, Pi and X;, Y; are known.

Gasser, Leutwyler 1984,1985; Bijnens, Colangelo,Ecker 1999



Example of matching: vector form factor

(m*(p') 13(@vau — dyud)[m*(p)) = (P + P )uFu(t) s t=(p' —p)?,

In the chiral limit my = mq = 0:

2flavours :  Fyp(t) =1+ ¢(t 0;d) — Zat

2Lt

3flavours :  Fys(t) =1 + 5 [¢(t 0;d) + 1¢(t Mg; d)] + =
0
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Example of matching: vector form factor

(m*(p') 13(@vau — dyud)[m*(p)) = (P + P )uFu(t) s t=(p' —p)?,

In the chiral limit my = myg = 0:

2flavours :  Fyp(t) =1+ ¢(t 0;d) — Zat

2Lt

3flavours :  Fys(t) =1+ ﬁ [®(t,0; d) + %tb(t, Mg; d)] + =
0 0

Drop terms of order ”t” and higher. It is seen that Fy 3(t) reduces to
Fv,2(t) if we put
1
—flg = 2Lo + E¢0(M|(,d).

At d = 4, this equation gives the relation between renormalized LECs

t(p) = —2Ls(n) + 2 ~a5—7 (I Boms/p? + 1).

Gasser, Leutwyler (85)



Matching at two loops

What about a matching at two—loop order? Some remarks:

> For ¢ one can extract its strange quark mass dependence at
two—loops from the literature

2 flavours: Fv,z(t), Gasser, Leutwyler (84)

3 flavours: F\/’3(t) Bijnens, Talavera (02)

» Despite literature, still an exhaustive work, because two—loop
diagrams need to be known analytically in an expansion in t/Boms
[up to logarithms In(—t/Bgms)]



Matching at two loops

» One can get the matching for F, B, /1, ..., ¢ from available two-loop
calculations of the various matrix elements.

» But the matching at order p® in this manner requires a tremendous
amount of two-loop calculations in ChP TS5 3.

» Therefore, we have developed a generic method based on the path
integral formulation of ChPT.



Generating functional

Loop expansion in a scalar field theory

> N scalar fields ¢1,...,¢n and M external sources j = ji,...,ju.
> Action

S[9,il = Sal,il + hSald, il + h*Se[¢,j] + - - -
> The generating functional for connected Green’s functions

exp(~2[jl/) = N / [de] exp(—S[e, il/h)

» The loop expansion is constructed as an expansion around the
solution of the equation of motion:
S j
Ok = Pak + &k » # 0.
¢k bk=dcal,k
> Introduce the abbreviation Sy, = San[¢a, j]-



Generating functional

» Functional integration over fluctuation field ¢ gives

Z = Zo+hZi+ hZy + O(R?),
Z, = S, Z, =S4 + Trin(D/D%,
z, =
@ () ©
@ ©
—=® [ ]
(®) ®

> The propagator is the inverse of the differential operator D from
quadratic term over &.

» Dotted vertices stem from S, crossed vertices from S;.
» Diagram (g) represents the tree graphs of Sg.



Generating functional

Two-flavor limit of the SU(3) generating functional.

» The restricted framework of ChPT3:

> massless light quarks my, = myq = 0
> SU(2)-type external sources

3 3
s=p=0, vuzzlz}\avz, auz;kaaz.
> external momenta are small |p?| << Boms
> tree level:
; 0
SE-MA
u=u@e2F"8 u® = 0
00 1

Inserting this ansatz into the EOM yields that also the solution of the n
field is trivial, n = 0.
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Generating functional

> Loops at order » => 1TrIn(D/D°) =  In(det D/ det D°)
Determinant:

» Separation of heavy and light fields

Indet D = Indet D + Indet D,, 4 Indet Dk + Indet(1 — D, ' D, D;, ' D)
——

1) 2)

» (1) Short distance expansion with
N heat—kernel = manifestly
covariant at all steps

Day > (2) m — n mixing

[gives no headaches at this order]



Generating functional

» Matching at one-loop order:

=(3) 1 detD ) 1 detd
Stree + 21 50 h0 = Stree + 210 400
» E.g. for (s:
dq 1
1 —
(_2'-9 _ﬁ/(2ﬂ)dMg(T2]2>/dX(f+uuluwuu]> —fs/dx (Fp [up, un])

chiral operator
from detDg



Generating functional

» Matching at one-loop order:

3) 1 detD _ _(2) detd
Stree + 210§ = Stree T 210 g
» E.g. for (s:
dq 1
(=200 —1s | oy g o) [ <l =t [ o Gl

chiral operator
from detDyg

» From which one verifies again

—2Lo(p) + (InBoms/pi® + 1) = £5(p)

192 19272



Generating functional

> Loops at order /1>

» The one-particle reducible diagrams with eta and kaons

) (e)

(c)

» tadpole and butterfly diagrams



Generating functional

> Loops at order /1>

» The one-particle reducible diagrams with eta and kaons

) (e)

(c)
» tadpole and butterfly diagrams

» sunset diagram is more difficult to evaluate

> need to know the propagators with two covariant derivatives
> need to expand the Seeley—coefficients around x = y up to 4th order

> need to express the normal derivatives via the covariant ones (use fixed
gauge)

> need to evaluate the tensorial two-loop diagrams of the sunset topology
analytically



Generating functional

Results of matching at two—loops

2 4
p; p — F,B; fli,....0
Gasser, Haefeli, lvanov, Schmidt PLB 652. (2007) 21
6
PP — Ci1,...,Cs6

Gasser, Haefeli, lvanov, Schmidt done, to be published

Two examples:

F = F0{1+z[8NL;—1 MK}+z [dr — 12 1n? ‘F/MK)}+O(Z)},
I = 12N(1+In )—2Lgr)+2[G—Wln(:G/MK)}'FO(Z)'
The expansion parameter
—2
M
Z=NTK(2,’ N = 1672,

where M stands for the kaon mass at next—to—leading order at
m, = myq = 0, and Fy denotes the pion decay constant at
my, =myg = mg = 0.



Generating functional

The dimensionless parameters df, ds and the logarithmic scales =, =5
are given by

de = 186‘516 +3 3P 11 '"% + % (In %)2
+N G+ 31 ML+ (G5 + 37 n )L
+(4269571 + 12 In )L3 o (93532 + 72 In )Lz]
+ N[5 (L) + 7 (L) + Tg7” (La)” + T33% (La)'?
+823§8 LILG + 102195704 Ly — 5695976 LiL: + % LiLs
14144 |.2|.4 _ 16592 Ls L4 + 64 |.4L5
—256 LjLy — 128 LjL} + 32 Cl] ,
n(Z2/Mg) = 32 nd P N2 82 B B0

Mic

2



Generating functional

_ 1 (163 1, 4 v )2
dg = _N(288+ P12 In §)+2N(m—2'-3—2'-9>
+8N (4Cl3 + Cia )
o —2
In(Z2/My) = —%—In%+8N(L3+L'9).
Furthermore

p1 = V2Cly(arccos(1/3)) = 1.41602 ,

1

¢ ¢
Cly(6) —= [ d¢ In(4sin® 5) -
0



Generating functional

Some applications ‘

> The scale independent LEC

- 2
I = 3NI3(1) — In 35

> It has been determined from a dispersive analysis

T, =43+0.1

> As follows from our formulae, 1; depend on L5, L} and the
combination 2Cj; — Ci;.

L, = (4+0.73+0.12)1073, L3 = (—2.35 £ 0.37) 103,

17 = Mp =770 MeV.



Generating functional

s | [ NLO _
r r — B
i --- NNLO, 2C', -C'; =0

r roo_ -5 7
— NNLO, 2C",-C',, =0.610

Y — \ !



Summary

» The degrees of K and 7 freeze for

|p2| < IV|2K ) my, mg < mg

> In this limit, one can establish relations among the 2 flavor
vs. the 3 flavor low energy constants

Results of matching at two—loops

chiral order | LECs

p2 FZB Moussallam (00)
p2 B Kaiser, Schweizer (06)

p2’ |:)4 F, B, Zl, ey £10 Gasser, Haefeli, Ivanov, Schmid (07)
p(i C1,...4C56 Gasser,Haefeli, lvanov, Schmid (08)
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