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Randomly forced Navier-Stokes equation for incompressible
fluid (V- v =0)
v +v-Vv=1yVv— @—I—f.
P
Isotropic pumping: gaussian distribution of random force
with zero mean and the correlation function

(61010 ) = (B = 252 ) (20— )50+ 1) s ()

Transport of a passive scalar admixture (temperature,
concentration): add advection-diffusion equation

00 + v - V0 = kgV20 + fy.
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Thermal fluctuations described by the correlation function
(UV cutoff implied)

d(k) = Doyok?, Do = 29T /p .

RG-analysis (momentum-shell) initiated by Forster, Nelson
& Stephen (1976).

For description of turbulent flow (d > 2) the choice is

1
df(k) — D10k4_d(/€2 + m2)_5 , Mo~ T
This is a § sequence yielding ~ §(k) In the limit ¢ — 2, m — 0.

Field-theoretic RG Initiated by De Dominicis & Martin (1979).
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Statistical description of the turbulent flow by structure
functions of the velocity field
n V- r
Su(r) = (log(t,x +1) =y (&%), vy =——.
Correlation functions with coinciding arguments: asymptotic
analysis of composite operators needed.

Kolmogorov scaling (1941) in the inertial range:
Sn(r) o (E’r)n/3 , MLk <<k,

Kolmogorov constant Cx and 2 (at d = 3) law

12
~Y > 2/3 ~ —
Sa(r) ~ Cg(Er)*?,  S3(r) ( ) ET.
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Cast the Navier-Stokes problem into the field-theoretic form:
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Cast the Navier-Stokes problem into the field-theoretic form:
De Dominicis-Janssen (or Martin-Siggia-Rose) action

1
Sns(v,v') = §V,DV/ V' [Ov + (VV)V = VPv] |

where (Pn = dnm — knkm /k?)

Dy(t.x+1.8.%) = 5(t — ) / dr exp [i(k - 1)] P (k)

Bare propagators for perturbation theory

(U ()0l ()0 = O(t — ') Py exp [—vok?(t — t)]

(U () on ()0 = dféljz;m” exp [—wvok?[t —t'[] , (v, (t)v, () =0,
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» Long-range correlator provides UV regularization.

» Analytic regularization with one parameter: MS scheme.
» Fleld renormalization not needed.

» Long-range correlation function not renormalized.

» No vertex renormalization due to Galilel invariance.

Only one renormalization constant for d > 2.

1
Sr(v,Vv') = §V/DV/ —v' [Ov + (VV)v — VZVVQV} .

Connect to bare parameters introducing .

vy = vy, gio = D10V0_3 — 91#28253-
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Consider velocity pair correlation function G(k):
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Consider velocity pair correlation function G(k):

/dr exp li(k - r)] (v (t, X + 1) (t, X)) = (5nm — k?};#) G(k).

Solution of the RG equation for the velocity correlator

G(k) = V’k* R (E,gl, T) — ?’k*IR (1,g1, T) .
oo k

Invariant (running) parameters o, g; from

B m D k—2€ 1/3
gio = §1/~€2€ZV J (5?1, E) , V= ( 10_ ) :
g1
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For £ > 0 3 an IR-stable fixed point. §; — g1« < €. Basic
scaling dimensions exact:

Ay=1—2/3, A,=2-2/3.

IR fixed point yields large-scale limit (k — 0, u = m/k =const)
G(k) ~ (D10/g1.:)*"* k2= *PR(, g1, w) , R(1, g1, Z e" R

Translate In traditional variables; trade D, for the mean
energy injection rate £ (2 > ¢ > 0):

2 —¢e)A*4E

_ d-1)
i Sa(d—1)

- 2(27)d

/dkdf(k) = Djp = 4( A= (E/V8)1/4
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G(k) ~ [4(2 —¢e)/S4(d — 1)91*]2/3 Vg_s E kQ_d_4€/3R(1, G1x,U) -

The desired Kolmogorov scaling, when ¢ — 2 (IR pumping).

Freezing of scaling dimensions for ¢ > 2 [Adzhemyan, Antonov
& Vasil'ev (1989)]: D,y acquires scale dependence through

Dig=4(e —2)m**E/Sy(d—1), m=1/L.
Yields independence of 1, Kolmogorov exponents V ¢ > 2:
G(k) ~ [4(e — 2)/Sa(d — 1)g1.] " €k 1234229 R(1 g1, ).
The inertial-range limit « = m/k — 0 tough. Use OPE.
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The limit u = m/k — 0 beyond RG. To collect terms elnu ~ 1,
use operator-product expansion for composite operators I
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C,, analytic in (mr)?: singularities due to dangerous
operators (F,(x)) oc m~F= with Ap < 0.
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The limit u = m/k — 0 beyond RG. To collect terms elnu ~ 1,
use operator-product expansion for composite operators I

Fy(t,x1) Fa (t, x2) Zo X1 — X2)Fo [(x1 +%x2)/2,1] .

C,, analytic in (mr)?: singularities due to dangerous
operators (F,(x)) oc m~F= with Ap < 0.

Sum over renormalized composite operators in the
correlation function to obtain

R(1, g1s,u ZOF

Dangerous operators not known for 0 < ¢ < 2: v — 0 safe!
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» advection of passive scalar
s hydrodynamic fluctuations, momentum-shell RG: Forster, Nelson & Stephen (1976),
» LR correlated injection, field-theoretic RG: Adzhemyan, Vasil’ev & Pis’'mak (1983),

» decaying scalar, hydrodynamic fluctuations, LR correlated injection, field-theoretic RG:
Hnatich (1990, reflecting boundary), Hnatich, JH (2000, absorbing boundary);

» compressible fluid

» LR correlated injection, momentum-shell RG: Staroselsky, Yakhot, Kida & Orszag
(1990),

» LR correlated injection, expansion in Mach number, FTRG, OPE: Adzhemyan, Nalimov
& Stepanova (1995);

s anisotropic random forcing

s LR, momentum-shell RG, weak anisotropy: Rubinstein & Barton (1987),

» LR, FTRG, weak anisotropy: Adzhemyan, Hnatich, Horvath & Stehlik (1995); Kim &
Serdukov (1995);

s LR, FTRG, strong anisotropy: BuSa, Hnatich, JH & Horvath (1997).

B
%



Large-scale pumping: ¢ — 2, m = + — 0 = dy(k) — (k).




Large-scale pumping: ¢ — 2, m = + — 0 = d (k) — §(k).
L f

Connect to experimental data through (m = 0)
~ (d-1)

E = 2(27T)d /dkdf(k) — D10 — 4(

2 —¢e)A*4E
§d(d —1)

A= (&)




Large-scale pumping: ¢ — 2, m = + — 0 = dy(k) — (k).
Connect to experimental data through (m = 0)

4(2 —e) A*71E
Sa(d—1)

£ = (2622;)13 /dkdf(k) = Dig =

A= (&)

Experimental Cx at ¢ — 2, but Ck(¢) Is ambiguous via
order-of-magnitude estimate of A.




Large-scale pumping: ¢ — 2, m = + — 0 = dy(k) — (k).

Connect to experimental data through (m = 0)
4(2 —e) A*71E
gd(d —1)

S d-1

~ 2(2m) A= EmY

/dkdf(/{) = Dig =

Experimental Cx at ¢ — 2, but Ck(¢) Is ambiguous via
order-of-magnitude estimate of A.

Attempts to relate Do and &€ in the momentum-shell
approach not flawless.




Large-scale pumping: ¢ — 2, m = + — 0 = dy(k) — (k).

Connect to experimental data through (m = 0)
~ (d-1)

E = 2(27T)d /dkdf(k) — Dl():

4(2 —e) A*71E
Saq(d—1)

A= (/)M

Experimental Cx at ¢ — 2, but Ck(¢) Is ambiguous via
order-of-magnitude estimate of A.

Attempts to relate Do and &€ in the momentum-shell
approach not flawless.

Use independent of Dy, quantity - the skewness factor
[Adzhemyan, Antonov, Kompaniets & Vasil’'ev (2003)]:

S =S5/57
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For ¢ > 2 the structure function Sy(r) ~ const, replace in S by
the function with powerlike asymptotics r9,.S(r) and define:

ropSa(r)  r0pSa(r)
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For ¢ > 2 the structure function Sy(r) ~ const, replace in S by
the function with powerlike asymptotics r9,.S(r) and define:

r0ySa(r) B r0ySa(r)
S~ SRR

Q(e) =

Calculate Kolmogorov constant and skewness factor
unambiguously as

3@2(2)] [d(dli 2)]2/3’ . [@] —3/2.

- | |
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Two-loop corrections to Cx and S large: ~ 100 % change for
d = 3 but rapidly decreasing with growing d.

Drastic growth in the limit ¢ — 2 due to singular graphs.
Summing up singularities calls for additional renormalization
near d = 2: to make it multiplicative, introduce (m = 0)

df(k) — D10k4_d_26 + D20k2

(JH & Nalimov, 1996) with Dy to be renormalized.

Coarse-graining of finite band-width forcing always
generates the local term (Forster, Nelson & Stephen, 1977).
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Why 2d fluctuations of importance for 34 ? Fluctuations
present in all d’s, sum In low dimensions! Then extrapolate.

Different physics in 2d and 3d: is it legal to extrapolate?

Borderline between direct and inverse cascades near the
point (2,2) in the d, « plane (Fournier & Frisch, 1977):

€

A Yes, inverse energy cas-
cade far from the linear
extrapolation path.
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Additional UV -renormalization near d = 2 required

1

SR = §V/ (Dl/~c4_al_28 + DQZD2k2> v'—v' [Ov + (VV)V — vZ,V*V]

with vy = vZ, and
go1r = DlOV()_3 = 91,“282;3 , 20 = DQOVO_B — gg,LLQ_dZDQZV_S .

The RG solution [m = 0, UV cutoff A imposed]

G(k, 910, 920, 10, A) = (D1o/31)*> K293 Ry (1,41, G, AJK) .

Near d = 2 3 IR-stable fixed point giving rise to double
expansion in € and 2A = d — 2.

e e T TS TR TN T 6T S Tl T 8 6 YA i T N
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Two-parameter renormalization not entirely trivial, problems
s analytic renormalization: no MS scheme,

» stable nontrivial fixed point at d > 2: dimensional
regularization insufficient for thermal fluctuations.

Renormalize on a ray with intermediate A renormalization
(Adzhemyan, JH, Kompaniets, Vasil’ev 2005).

» fix the ratio (d — 2)/e = 2( to restore MS scheme,

» Introduce explicit cutoff A, renormalize out large A terms
[replace primary (physical) bare parameters by
secondary ones],

» the remainder Is analytic continuation from d < 2.
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Two complementary ways to calculate the universal ratio Q:

s In e, A expansion on the ray ¢ = (d — 2)/2¢ = const:

0p-Sa(
Qe) = (TSS(Z 2/3 ngqjk

» In ¢ expansion with coefficients smgular, when d — 2:

g) =¢el/? i Qr(d)e"
k=0

These are two different subsequences of the double series

Qle,d) =2y ¥ [2¢/(d—2))" g [(d—2)/2)".

k=0 [=0




Combine the information from both expansions

Qupy =e'/? ZQk

L k=0

() w ()

k. 1=0 _

Subtraction term to account
for double counting in the
overlap region.




Combine the information from both expansions

n—1
QLY =23 Quld)e!
_ k=0

?gggf%@;X.

k,l=0

Subtraction term to account

for double counting in the
overlap region.
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Comparison of one-loop and two-loop results for Ck:
n Ce Cen Cs Cery
1 147 168 1.37 1.79
2 3.02 357 422 2.37

» (. — ¢ expansion

» (. —double expansion

» (5 — overlap correction

» C.r¢ —Improved e expansion




Comparison of one-loop and two-loop results for Ck:
n Ce Cen Cs Cery
1 147 168 1.37 1.79
2 3.02 357 422 2.37

» (. — e expansion

» (. —double expansion

» (5 — overlap correction

» C.r¢ —Improved e expansion

Recommended experimental value: Cx = 2.0 (Sreenivasan,
1995).
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Prandtl number for thermal conduction: Pr = vy/kg = 1/u.
Define turbulent (effective) inverse Prandtl number:

Ueff = Fggl(k,w — O)/Fm,/(k,w — 0) .

Singular in d — 2 contributions cancel: two-loop correction
small [Adzhemyan, JH, Kim & Sladkoff (2005)]:

VA373 — 1
uerr = ul (1= 0.0358¢) + O(e2), ul”) = /2 d=3.

At « = 2 the turbulent Prandtl number Pr; close to accepted
experimental value Pr; ~ 0.81:

Pri% ~ 072,  Pr,~0.77.
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» two-loo
powerli

» two-loo

0 RG analysis of stochastic Navier-Stokes with
Ke forcing correlations

0 RG analysis of Navier-Stokes advected scalar

» account of finite-band-width injection through nearly 2d

model

» combined account of subsequences from £ expansion
and e, A expansion

» significant improvement of numerical results
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