Renormalization group in stochastic hydrodynamics

Juha Honkonen
Outline

- Stochastic hydrodynamics
- Structure functions
- Functional representation of the stochastic problem
- Asymptotic analysis by RG and OPE
- Two-parameter expansion
- Improved ε expansion
- Two-loop results
 - Kolmogorov constant
 - Prandtl number
- Conclusion
Randomly forced Navier-Stokes equation for incompressible fluid ($\nabla \cdot \mathbf{v} = 0$)

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} = \nu_0 \nabla^2 \mathbf{v} - \frac{\nabla p}{\rho} + \mathbf{f}.$$
Randomly forced Navier-Stokes equation for incompressible fluid \((\nabla \cdot \mathbf{v} = 0)\)

\[
\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} = \nu_0 \nabla^2 \mathbf{v} - \frac{\nabla p}{\rho} + \mathbf{f}.
\]

Isotropic pumping: gaussian distribution of random force with zero mean and the correlation function

\[
\langle f_m(t, \mathbf{k}) f_n(t', \mathbf{k}') \rangle = \left(\delta_{mn} - \frac{k_m k_n}{k^2} \right) (2\pi)^d \delta(t - t') \delta(\mathbf{k} + \mathbf{k}') df(k).
\]
Randomly forced Navier-Stokes equation for incompressible fluid ($\nabla \cdot \mathbf{v} = 0$)

$$
\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} = \nu_0 \nabla^2 \mathbf{v} - \frac{\nabla p}{\rho} + \mathbf{f}.
$$

Isotropic pumping: gaussian distribution of random force with zero mean and the correlation function

$$
\langle f_m(t, k)f_n(t', k') \rangle = \left(\delta_{mn} - \frac{k_m k_n}{k^2} \right) (2\pi)^d \delta(t - t') \delta(k + k') df(k).
$$

Transport of a passive scalar admixture (temperature, concentration): add advection-diffusion equation

$$
\partial_t \theta + \mathbf{v} \cdot \nabla \theta = \kappa_0 \nabla^2 \theta + f_{\theta}.
$$
Thermal fluctuations vs. random stirring

Thermal fluctuations described by the correlation function (UV cutoff implied)

\[d_f(k) = D_{20}k^2, \quad D_{20} = 2\nu_0 T/\rho. \]
Thermal fluctuations vs. random stirring

Thermal fluctuations described by the correlation function (UV cutoff implied)

\[d_f(k) = D_{20} k^2, \quad D_{20} = 2\nu_0 T / \rho. \]

RG-analysis (momentum-shell) initiated by Forster, Nelson & Stephen (1976).
Thermal fluctuations vs. random stirring

Thermal fluctuations described by the correlation function (UV cutoff implied)

\[d_f(k) = D_{20}k^2, \quad D_{20} = 2\nu_0T/\rho. \]

RG-analysis (momentum-shell) initiated by Forster, Nelson & Stephen (1976).

For description of turbulent flow \((d > 2)\) the choice is

\[d_f(k) = D_{10}k^{4-d}(k^2 + m^2)^{-\varepsilon}, \quad m \sim \frac{1}{L}. \]
Thermal fluctuations vs. random stirring

Thermal fluctuations described by the correlation function (UV cutoff implied)

\[d_f(k) = D_{20} k^2, \quad D_{20} = 2\nu_0 T / \rho. \]

RG-analysis (momentum-shell) initiated by Forster, Nelson & Stephen (1976).

For description of turbulent flow \((d > 2)\) the choice is

\[d_f(k) = D_{10} k^{4-d} (k^2 + m^2)^{-\epsilon}, \quad m \sim \frac{1}{L}. \]

This is a \(\delta\) sequence yielding \(\sim \delta(k)\) in the limit \(\epsilon \to 2, m \to 0\).

Field-theoretic RG initiated by De Dominicis & Martin (1979).
Statistical description of the turbulent flow by structure functions of the velocity field

\[S_n(r) = \langle \left[v_\parallel(t, x + r) - v_\parallel(t, x) \right]^n \rangle, \quad v_\parallel = \frac{v \cdot r}{r}. \]

Correlation functions with coinciding arguments: asymptotic analysis of composite operators needed.
Kolmogorov scaling of structure functions

Statistical description of the turbulent flow by structure functions of the velocity field

\[S_n(r) = \left\langle \left[v_\parallel(t, x + r) - v_\parallel(t, x) \right]^n \right\rangle, \quad v_\parallel = \frac{v \cdot r}{r}. \]

Correlation functions with coinciding arguments: asymptotic analysis of composite operators needed.

Kolmogorov scaling (1941) in the inertial range:

\[S_n(r) \propto (\overline{\varepsilon} r)^{n/3}, \quad m \ll k \ll k_d. \]
Kolmogorov scaling of structure functions

Statistical description of the turbulent flow by structure functions of the velocity field

\[S_n(r) = \langle [v_{\parallel}(t, x + r) - v_{\parallel}(t, x)]^n \rangle, \quad v_{\parallel} = \frac{\mathbf{v} \cdot \mathbf{r}}{r}. \]

Correlation functions with coinciding arguments: asymptotic analysis of composite operators needed.

Kolmogorov scaling (1941) in the inertial range:

\[S_n(r) \propto (\overline{\varepsilon}r)^{n/3}, \quad m \ll k \ll k_d. \]

Kolmogorov constant \(C_K \) and \(\frac{4}{5} \) (at \(d = 3 \)) law

\[S_2(r) \sim C_K (\overline{\varepsilon}r)^{2/3}, \quad S_3(r) \sim -\frac{12}{d(d+2)} \overline{\varepsilon}r. \]
Cast the Navier-Stokes problem into the field-theoretic form: De Dominicis-Janssen (or Martin-Siggia-Rose) action

\[
S_{NS}(v, v') = \frac{1}{2} v' Dv' - v' \left[\partial_t v + (v \nabla) v - \nu_0 \nabla^2 v \right],
\]
Field-theoretic (MSR) representation

Cast the Navier-Stokes problem into the field-theoretic form: De Dominicis-Janssen (or Martin-Siggia-Rose) action

\[
S_{NS}(v, v') = \frac{1}{2}v'Dv' - v'[\partial_t v + (v \nabla)v - \nu_0 \nabla^2 v],
\]

where \((P_{mn} = \delta_{nm} - k_n k_m / k^2)\)

\[
D_{mn}(t, x + r, t', x) = \delta(t - t') \int dr \exp[i(k \cdot r)] P_{mn} d_f(k).
\]
Cast the Navier-Stokes problem into the field-theoretic form: De Dominicis-Janssen (or Martin-Siggia-Rose) action

\[S_{NS}(v, v') = \frac{1}{2} v' Dv' - v' \left[\partial_t v + (v \nabla) v - \nu_0 \nabla^2 v \right], \]

where \((P_{mn} = \delta_{nm} - k_n k_m / k^2) \)

\[D_{mn}(t, x + r, t', x) = \delta(t - t') \int dr \exp \left[i(k \cdot r) \right] P_{mn} d_f(k). \]

Bare propagators for perturbation theory

\[\langle v_m(t) v'_n(t') \rangle_0 = \theta(t - t') P_{mn} \exp \left[-\nu_0 k^2 (t - t') \right], \]

\[\langle v_m(t) v_n(t') \rangle_0 = \frac{d_f(k) P_{mn}}{2\nu_0 k^2} \exp \left[-\nu_0 k^2 |t - t'| \right], \langle v'_m(t) v'_n(t') \rangle_0 = 0. \]
Renormalization in space dimension $d > 2$

- Long-range correlator provides UV regularization.
Renormalization in space dimension $d > 2$

- Long-range correlator provides UV regularization.
- Analytic regularization with one parameter: MS scheme.
Renormalization in space dimension $d > 2$

- Long-range correlator provides UV regularization.
- Analytic regularization with one parameter: MS scheme.
- Field renormalization not needed.
Renormalization in space dimension \(d > 2 \)

- Long-range correlator provides UV regularization.
- Analytic regularization with one parameter: MS scheme.
- Field renormalization not needed.
- Long-range correlation function not renormalized.
Long-range correlator provides UV regularization.

Analytic regularization with one parameter: MS scheme.

Field renormalization not needed.

Long-range correlation function not renormalized.

No vertex renormalization due to Galilei invariance.
Long-range correlator provides UV regularization.

Analytic regularization with one parameter: MS scheme.

Field renormalization not needed.

Long-range correlation function not renormalized.

No vertex renormalization due to Galilei invariance.

Only one renormalization constant for $d > 2$.

\[
S_R(v, v') = \frac{1}{2} v' D v' - v' \left[\partial_t v + (v \nabla) v - \nu Z_v \nabla^2 v \right].
\]
Renormalization in space dimension \(d > 2 \)

- Long-range correlator provides UV regularization.
- Analytic regularization with one parameter: MS scheme.
- Field renormalization not needed.
- Long-range correlation function not renormalized.
- No vertex renormalization due to Galilei invariance.

Only one renormalization constant for \(d > 2 \).

\[
S_R(v, v') = \frac{1}{2} v' D v' - v' \left[\partial_t v + (v \nabla) v - \nu Z_v \nabla^2 v \right].
\]

Connect to bare parameters introducing \(\mu \):

\[
\nu_0 = \nu Z_v, \quad g_{10} = D_{10} \nu_0^{-3} = g_1 \mu^{2\epsilon} Z_v^{-3}.
\]
Consider velocity pair correlation function $G(k)$:

$$
\int d\mathbf{r} \exp \left[i (\mathbf{k} \cdot \mathbf{r}) \right] \langle v_n(t, \mathbf{x} + \mathbf{r}) v_m(t, \mathbf{x}) \rangle = \left(\delta_{nm} - \frac{k_n k_m}{k^2} \right) G(k).
$$
Consider velocity pair correlation function $G(k)$:

$$
\int dr \exp \left[i(k \cdot r) \right] \langle v_n(t, x + r) v_m(t, x) \rangle = \left(\delta_{nm} - \frac{k_n k_m}{k^2} \right) G(k).
$$

Solution of the RG equation for the velocity correlator

$$
G(k) = \nu^2 k^{2-d} R \left(\frac{k}{\mu}, g_1, \frac{m}{\mu} \right) = \bar{\nu}^2 k^{2-d} R \left(1, \bar{g}_1, \frac{m}{\bar{k}} \right).
$$

Invariant (running) parameters $\bar{\nu}, \bar{g}_1$ from

$$
g_{10} = \bar{g}_1 k^{2\varepsilon} Z_\nu^{-3} \left(\bar{g}_1, \frac{m}{\bar{k}} \right), \quad \bar{\nu} = \left(\frac{D_{10} k^{-2\varepsilon}}{\bar{g}_1} \right)^{1/3}.
$$
For $\varepsilon > 0 \exists$ an IR-stable fixed point: $\bar{g}_1 \rightarrow g_{1*} \propto \varepsilon$. Basic scaling dimensions exact:

$$\Delta_v = 1 - 2\varepsilon/3, \quad \Delta_\omega = 2 - 2\varepsilon/3.$$
For $\varepsilon > 0 \exists$ an IR-stable fixed point: $\bar{g}_1 \to g_{1*} \propto \varepsilon$. Basic scaling dimensions exact:

$$\Delta_v = 1 - 2\varepsilon/3, \quad \Delta_\omega = 2 - 2\varepsilon/3.$$

IR fixed point yields large-scale limit ($k \to 0$, $u = m/k = \text{const}$)

$$G(k) \sim (D_{10}/g_{1*})^{2/3} k^{2-d-4\varepsilon/3} R(1, g_{1*}, u), \quad R(1, g_{1*}, u) = \sum_{n=1}^{\infty} \varepsilon^n R_n(u).$$
Large-scale asymptotic behaviour

For $\varepsilon > 0 \exists$ an IR-stable fixed point: $\bar{g}_1 \to g_{1*} \propto \varepsilon$. Basic scaling dimensions exact:

$$\Delta_v = 1 - 2\varepsilon/3, \quad \Delta_\omega = 2 - 2\varepsilon/3.$$

IR fixed point yields large-scale limit ($k \to 0, u = m/k = \text{const}$)

$$G(k) \sim \left(\frac{D_{10}}{g_{1*}}\right)^{2/3} k^{2-d-4\varepsilon/3} R(1, g_{1*}, u), \quad R(1, g_{1*}, u) = \sum_{n=1}^{\infty} \varepsilon^n R_n(u).$$

Translate in traditional variables; trade D_{10} for the mean energy injection rate $\bar{\mathcal{E}}$ ($2 > \varepsilon > 0$):

$$\bar{\mathcal{E}} = \frac{(d-1)}{2(2\pi)^d} \int d kd f(k) \Rightarrow D_{10} = \frac{4(2 - \varepsilon) \Lambda^{2\varepsilon-4\bar{\mathcal{E}}}}{\bar{\mathcal{S}}_d(d-1)}, \quad \Lambda = \left(\frac{\bar{\mathcal{E}}/\nu^3_0}{\nu^3_0}\right)^{1/4}.$$
Inertial-range scaling

Large-scale scaling in terms of \bar{E} and ν_0 for $2 > \varepsilon > 0$:

$$G(k) \sim \left[\frac{4(2 - \varepsilon)}{\mathcal{S}_d(d - 1)g_1^*} \right]^{2/3} \nu_0^{2-\varepsilon} \bar{E}^{\varepsilon/3} k^{2-d-4\varepsilon/3} R(1, g_1^*, u).$$
Inertial-range scaling

Large-scale scaling in terms of \bar{E} and ν_0 for $2 > \varepsilon > 0$:

$$G(k) \sim \left[\frac{4(2 - \varepsilon)}{\mathcal{S}_d(d - 1)g_1*} \right]^{2/3} \nu_0^{2-\varepsilon} \bar{E}^{\varepsilon/3} k^{2-d-4\varepsilon/3} R(1, g_1*, u).$$

The desired Kolmogorov scaling, when $\varepsilon \to 2$ (IR pumping).
Large-scale scaling in terms of \bar{E} and ν_0 for $2 > \varepsilon > 0$:

$$G(k) \sim \left[\frac{4(2 - \varepsilon)}{S_d(d - 1)g_1^*} \right]^{2/3} \nu_0^{2-\varepsilon} \bar{E}^{\varepsilon/3} k^{2-d-4\varepsilon/3} R(1, g_1^*, u).$$

The desired Kolmogorov scaling, when $\varepsilon \rightarrow 2$ (IR pumping).

Freezing of scaling dimensions for $\varepsilon > 2$ [Adzhemyan, Antonov & Vasil’ev (1989)]: D_{10} acquires scale dependence through

$$D_{10} = 4(\varepsilon - 2) m^{4-2\varepsilon} \bar{E} / S_d(d - 1), \quad m = 1/L.$$
Large-scale scaling in terms of $\bar{\mathcal{E}}$ and ν_0 for $2 > \varepsilon > 0$:

$$G(k) \sim \left[\frac{4(2 - \varepsilon)}{\mathcal{S}_d(d - 1)g_1^*}\right]^{2/3} \nu_0^{2-\varepsilon} \frac{\bar{\mathcal{E}}^{\varepsilon/3}}{k^{2-d-4\varepsilon/3}} R(1, g_1^*, u).$$

The desired Kolmogorov scaling, when $\varepsilon \to 2$ (IR pumping). Freezing of scaling dimensions for $\varepsilon > 2$ [Adzhemyan, Antonov & Vasil’ev (1989)]: D_{10} acquires scale dependence through

$$D_{10} = 4(\varepsilon - 2) m^{4-2\varepsilon} \frac{\bar{\mathcal{E}}}{\mathcal{S}_d(d - 1)}, \quad m = 1/L.$$

Yields independence of ν_0, Kolmogorov exponents $\forall \varepsilon > 2$:

$$G(k) \sim \left[\frac{4(\varepsilon - 2)}{\mathcal{S}_d(d - 1)g_1^*}\right]^{2/3} \bar{\mathcal{E}}^{2/3} k^{-d-2/3} u^{4(2-\varepsilon)/3} R(1, g_1^*, u).$$
Inertial-range scaling

Large-scale scaling in terms of \bar{E} and ν_0 for $2 > \varepsilon > 0$:

$$G(k) \sim \left[4(2 - \varepsilon) / \mathcal{S}_d(d - 1) g_{1*} \right]^{2/3} \nu_0^{2-\varepsilon} \bar{E}^{\varepsilon/3} k^{2-d-4\varepsilon/3} R(1, g_{1*}, u).$$

The desired Kolmogorov scaling, when $\varepsilon \to 2$ (IR pumping).

Freezing of scaling dimensions for $\varepsilon > 2$ [Adzhemyan, Antonov & Vasil’ev (1989)]: D_{10} acquires scale dependence through

$$D_{10} = 4(\varepsilon - 2) m^{4-2\varepsilon} \bar{E} / \mathcal{S}_d(d - 1), \quad m = 1/L.$$

Yields independence of ν_0, Kolmogorov exponents $\forall \varepsilon > 2$:

$$G(k) \sim \left[4(\varepsilon - 2) / \mathcal{S}_d(d - 1) g_{1*} \right]^{2/3} \bar{E}^{2/3} k^{-d-2/3} u^{4(2-\varepsilon)/3} R(1, g_{1*}, u).$$

The inertial-range limit $u = m/k \to 0$ tough. Use OPE.
The limit $u = m/k \to 0$ beyond RG. To collect terms $\varepsilon \ln u \sim 1$, use operator-product expansion for composite operators F:

$$F_1(t, x_1)F_2(t, x_2) = \sum_{\alpha} C_{\alpha}(x_1 - x_2) F_{\alpha} [(x_1 + x_2)/2, t].$$

C_{α} analytic in $(mr)^2$: singularities due to dangerous operators $\langle F_{\alpha}(x) \rangle \propto m^{\Delta_{F_{\alpha}}}$ with $\Delta_{F_{\alpha}} < 0$.
The limit $u = m/k \to 0$ beyond RG. To collect terms $\varepsilon \ln u \sim 1$, use operator-product expansion for composite operators F:

$$F_1(t, x_1)F_2(t, x_2) = \sum_{\alpha} C_\alpha (x_1 - x_2) F_\alpha \left[(x_1 + x_2)/2, t \right].$$

C_α analytic in $(mr)^2$: singularities due to dangerous operators $\langle F_\alpha(x) \rangle \propto m^{\Delta_{F_\alpha}}$ with $\Delta_{F_\alpha} < 0$.

Sum over renormalized composite operators in the correlation function to obtain

$$R(1, g_1^*, u) = \sum_{F} C_F(u) u^{\Delta_F}.$$
The limit \(u = m/k \to 0 \) beyond RG. To collect terms \(\varepsilon \ln u \sim 1 \), use operator-product expansion for composite operators \(F \):

\[
F_1(t, x_1)F_2(t, x_2) = \sum_\alpha C_\alpha(x_1 - x_2)F_\alpha \left[(x_1 + x_2)/2, t \right].
\]

\(C_\alpha \) analytic in \((mr)^2\): singularities due to dangerous operators \(\langle F_\alpha(x) \rangle \propto m^{\Delta_{F\alpha}} \) with \(\Delta_{F\alpha} < 0 \). Sum over renormalized composite operators in the correlation function to obtain

\[
R(1, g_1*, u) = \sum_F C_F(u)u^{\Delta_F}.
\]

Dangerous operators not known for \(0 < \varepsilon < 2 \): \(u \to 0 \) safe!
advection of passive scalar

- hydrodynamic fluctuations, momentum-shell RG: Forster, Nelson & Stephen (1976),
- LR correlated injection, field-theoretic RG: Adzhemyan, Vasil’ev & Pis’mak (1983),
- decaying scalar, hydrodynamic fluctuations, LR correlated injection, field-theoretic RG: Hnatich (1990, reflecting boundary), Hnatich, JH (2000, absorbing boundary);
advection of passive scalar

- hydrodynamic fluctuations, momentum-shell RG: Forster, Nelson & Stephen (1976),
- LR correlated injection, field-theoretic RG: Adzhemyan, Vasil’ev & Pis’mak (1983),
- decaying scalar, hydrodynamic fluctuations, LR correlated injection, field-theoretic RG: Hnatich (1990, reflecting boundary), Hnatich, JH (2000, absorbing boundary);

compressible fluid

- LR correlated injection, momentum-shell RG: Staroselsky, Yakhot, Kida & Orszag (1990),
- LR correlated injection, expansion in Mach number, FTRG, OPE: Adzhemyan, Nalimov & Stepanova (1995);
Ramifications of the Navier-Stokes problem

- **advection of passive scalar**
 - hydrodynamic fluctuations, momentum-shell RG: Forster, Nelson & Stephen (1976),
 - LR correlated injection, field-theoretic RG: Adzhemyan, Vasil’ev & Pis’mak (1983),
 - decaying scalar, hydrodynamic fluctuations, LR correlated injection, field-theoretic RG: Hnatich (1990, reflecting boundary), Hnatich, JH (2000, absorbing boundary);

- **compressible fluid**
 - LR correlated injection, momentum-shell RG: Staroselsky, Yakhot, Kida & Orszag (1990),
 - LR correlated injection, expansion in Mach number, FTRG, OPE: Adzhemyan, Nalimov & Stepanova (1995);

- **anisotropic random forcing**
 - LR, momentum-shell RG, weak anisotropy: Rubinstein & Barton (1987),
 - LR, FTRG, weak anisotropy: Adzhemyan, Hnatich, Horvath & Stehlik (1995); Kim & Serdukov (1995);
Skewness factor in the inertial range

Large-scale pumping: $\varepsilon \to 2, \ m = \frac{1}{L} \to 0 \Rightarrow d_f(k) \to \delta(k)$.
Large-scale pumping: $\varepsilon \to 2$, $m = \frac{1}{L} \to 0 \Rightarrow d_f(k) \to \delta(k)$.
Connect to experimental data through $(m = 0)$

$$\mathcal{E} = \frac{(d - 1)}{2(2\pi)^d} \int d\mathbf{k} \, d_f(k) \Rightarrow D_{10} = \frac{4(2 - \varepsilon) \Lambda^{2\varepsilon-4}\mathcal{E}}{\mathcal{S}_d(d-1)}, \quad \Lambda = \left(\frac{\mathcal{E}}{\nu_0^3}\right)^{1/4}.$$
Skewness factor in the inertial range

Large-scale pumping: $\varepsilon \to 2$, $m = \frac{1}{L} \to 0 \Rightarrow d_f(k) \to \delta(k)$. Connect to experimental data through $(m = 0)$

$$\overline{\mathcal{E}} = \frac{(d-1)}{2(2\pi)^d} \int d\mathbf{k} \, d_f(k) \Rightarrow D_{10} = \frac{4(2 - \varepsilon) \Lambda^{2\varepsilon - 4} \overline{\mathcal{E}}}{S_d(d - 1)}, \quad \Lambda = (\overline{\mathcal{E}}/\nu_0^3)^{1/4}.$$

Experimental C_K at $\varepsilon \to 2$, but $C_K(\varepsilon)$ is ambiguous via order-of-magnitude estimate of Λ.
Skewness factor in the inertial range

Large-scale pumping: $\varepsilon \to 2$, $m = \frac{1}{L} \to 0 \Rightarrow d_f(k) \to \delta(k)$.
Connect to experimental data through ($m = 0$)

$$\bar{E} = \frac{(d-1)}{2(2\pi)^d} \int d\mathbf{k} d_f(k) \Rightarrow D_{10} = \frac{4(2 - \varepsilon) \Lambda^{2\varepsilon-4} \bar{E}}{S_d(d-1)}, \quad \Lambda = (\bar{E}/\nu_0^3)^{1/4}.$$

Experimental C_K at $\varepsilon \to 2$, but $C_K(\varepsilon)$ is ambiguous via order-of-magnitude estimate of Λ.

Attempts to relate D_{10} and \bar{E} in the momentum-shell approach not flawless.
Skewness factor in the inertial range

Large-scale pumping: $\varepsilon \to 2, \ m = \frac{1}{L} \to 0 \Rightarrow d_f(k) \to \delta(k)$.
Connect to experimental data through $(m = 0)$

$$\overline{\mathcal{E}} = \frac{(d - 1)}{2(2\pi)^d} \int d\mathbf{k} \ d_f(k) \Rightarrow D_{10} = \frac{4(2 - \varepsilon) \Lambda^{2\varepsilon - 4} \overline{\mathcal{E}}}{\mathcal{S}_d(d - 1)}, \ \Lambda = (\overline{\mathcal{E}}/\nu_0^3)^{1/4}.$$

Experimental C_K at $\varepsilon \to 2$, but $C_K(\varepsilon)$ is ambiguous via order-of-magnitude estimate of Λ.

Attempts to relate D_{10} and $\overline{\mathcal{E}}$ in the momentum-shell approach not flawless.

Use independent of D_{10} quantity - the skewness factor
[Adzhemyan, Antonov, Kompaniets & Vasil’ev (2003)]:

$$S = S_3/S_2^{3/2}.$$
For $\varepsilon \geq \frac{3}{2}$ the structure function $S_2(r) \sim \text{const}$, replace in S by the function with powerlike asymptotics $r \partial_r S_2(r)$ and define:

$$Q(\varepsilon) \equiv \frac{r \partial_r S_2(r)}{|S_3(r)|^{2/3}} = \frac{r \partial_r S_2(r)}{[-S_3(r)]^{2/3}}.$$
For $\varepsilon \geq \frac{3}{2}$ the structure function $S_2(r) \sim \text{const}$, replace in S by the function with powerlike asymptotics $r\partial_r S_2(r)$ and define:

$$Q(\varepsilon) \equiv \frac{r \partial_r S_2(r)}{|S_3(r)|^{2/3}} = \frac{r \partial_r S_2(r)}{[-S_3(r)]^{2/3}}.$$

Calculate Kolmogorov constant and skewness factor unambiguously as

$$C_K = \left[\frac{3Q(2)}{2} \right] \left[\frac{12}{d(d+2)} \right]^{2/3}, \quad S = -\left[\frac{3Q(2)}{2} \right]^{-3/2}.$$
Two-loop corrections to C_K and S large: $\approx 100\%$ change for $d = 3$ but rapidly decreasing with growing d.

Drastic growth in the limit $d \to 2$ due to singular graphs.
Two-loop corrections to C_K and S large: $\approx 100\%$ change for $d = 3$ but rapidly decreasing with growing d.

Drastic growth in the limit $d \to 2$ due to singular graphs. Summing up singularities calls for additional renormalization near $d = 2$: to make it multiplicative, introduce ($m = 0$)

$$d_f(k) = D_{10}k^{4-d-2\varepsilon} + D_{20}k^2$$

(JH & Nalimov, 1996) with D_{20} to be renormalized.
Two-loop corrections to C_K and S large: $\approx 100\%$ change for $d = 3$ but rapidly decreasing with growing d.

Drastic growth in the limit $d \to 2$ due to singular graphs. Summing up singularities calls for additional renormalization near $d = 2$: to make it multiplicative, introduce $(m = 0)$

$$d_f(k) = D_{10}k^{4-d-2\varepsilon} + D_{20}k^2$$

(JH & Nalimov, 1996) with D_{20} to be renormalized.

Why $2d$ fluctuations of importance for $3d$? Fluctuations present in all d’s, sum in low dimensions! Then extrapolate.
Why \(2d\) fluctuations of importance for \(3d\)? Fluctuations present in all \(d\)'s, sum in low dimensions! Then extrapolate.

Different physics in \(2d\) and \(3d\): is it legal to extrapolate?
Why $2d$ fluctuations of importance for $3d$? Fluctuations present in all d’s, sum in low dimensions! Then extrapolate.

Different physics in $2d$ and $3d$: is it legal to extrapolate?

Borderline between direct and inverse cascades near the point (2,2) in the d, ε plane (Fournier & Frisch, 1977):
Why $2d$ fluctuations of importance for $3d$? Fluctuations present in all d’s, sum in low dimensions! Then extrapolate.

Different physics in $2d$ and $3d$: is it legal to extrapolate?

Borderline between direct and inverse cascades near the point (2,2) in the d, ε plane (Fournier & Frisch, 1977):
Why $2d$ fluctuations of importance for $3d$? Fluctuations present in all d's, sum in low dimensions! Then extrapolate.

Different physics in $2d$ and $3d$: is it legal to extrapolate?

Borderline between direct and inverse cascades near the point (2,2) in the d, ε plane (Fournier & Frisch, 1977):

Yes, inverse energy cascade far from the linear extrapolation path.
Additional UV-renormalization near $d = 2$ required

$$S_R = \frac{1}{2} v' \left(D_1 k^{4-d-2\varepsilon} + D_2 Z_{D_2} k^2 \right) v' - v' \left[\partial_t v + (v \nabla) v - \nu Z_{\nu} \nabla^2 v \right]$$

with $\nu_0 = \nu Z_{\nu}$ and

$$g_{01} = D_{10} \nu_0^{-3} = g_1 \mu^{2\varepsilon} Z_{\nu}^{-3}, \quad g_{20} = D_{20} \nu_0^{-3} = g_2 \mu^{2-d} Z_{D_2} Z_{\nu}^{-3}.$$
Two-parameter expansion

Additional UV-renormalization near $d = 2$ required

$$S_R = \frac{1}{2} \mathbf{v}' \left(D_1 k^{4-d-2\varepsilon} + D_2 Z_{D_2} k^2 \right) \mathbf{v}' - \mathbf{v}' \left[\partial_t \mathbf{v} + (\mathbf{v} \nabla) \mathbf{v} - \nu Z_\nu \nabla^2 \mathbf{v} \right]$$

with $\nu_0 = \nu Z_\nu$ and

$$g_{01} = D_{10} \nu_0^{-3} = g_1 \mu^{2\varepsilon} Z_\nu^{-3}, \quad g_{20} = D_{20} \nu_0^{-3} = g_2 \mu^{2-d} Z_{D_2} Z_\nu^{-3}.$$

The RG solution $[m = 0, \text{UV cutoff } \Lambda \text{ imposed}]$

$$G(k, g_{10}, g_{20}, \nu_0, \Lambda) = \left(D_{10} / \bar{g}_1 \right)^{2/3} k^{2-d-4\varepsilon/3} R_\Lambda \left(1, \bar{g}_1, \bar{g}_2, \Lambda / k \right).$$
Two-parameter expansion

Additional UV-renormalization near $d = 2$ required

$$S_R = \frac{1}{2} \mathbf{v}' \left(D_1 k^{4-d-2\varepsilon} + D_2 Z D_2 k^2 \right) \mathbf{v}' - \mathbf{v}' \left[\partial_t \mathbf{v} + (\mathbf{v} \nabla) \mathbf{v} - \nu Z \nu \nabla^2 \mathbf{v} \right]$$

with $\nu_0 = \nu Z_{\nu}$ and

$$g_{01} = D_{10} \nu_0^{-3} = g_1 \mu^{2\varepsilon} Z_{\nu}^{-3}, \quad g_{20} = D_{20} \nu_0^{-3} = g_2 \mu^{2-d} Z D_2 Z_{\nu}^{-3}.$$

The RG solution [$m = 0$, UV cutoff Λ imposed]

$$G(k, g_{10}, g_{20}, \nu_0, \Lambda) = \left(D_{10}/\bar{g}_1 \right)^{2/3} k^{2-d-4\varepsilon/3} R_{\Lambda} \left(1, \bar{g}_1, \bar{g}_2, \Lambda/k \right).$$

Near $d = 2 \exists$ IR-stable fixed point giving rise to double expansion in ε and $2\Delta = d - 2$.
Minimal subtractions on rays

Two-parameter renormalization not entirely trivial; problems

- analytic renormalization: no MS scheme,
Minimal subtractions on rays

Two-parameter renormalization not entirely trivial; problems

- analytic renormalization: no MS scheme,
- stable nontrivial fixed point at $d > 2$: dimensional regularization insufficient for thermal fluctuations.
Minimal subtractions on rays

Two-parameter renormalization not entirely trivial; problems

- analytic renormalization: no MS scheme,
- stable nontrivial fixed point at $d > 2$: dimensional regularization insufficient for thermal fluctuations.

Renormalize on a ray with intermediate Λ renormalization (Adzhemyan, JH, Kompaniets, Vasil’ev 2005):
Minimal subtractions on rays

Two-parameter renormalization not entirely trivial; problems

- analytic renormalization: no MS scheme,
- stable nontrivial fixed point at $d > 2$: dimensional
 regularization insufficient for thermal fluctuations.

Renormalize on a ray with intermediate Λ renormalization
(Adzhemyan, JH, Kompaniets, Vasil’ev 2005):

- fix the ratio $(d - 2)/\varepsilon = 2\zeta$ to restore MS scheme,
Two-parameter renormalization not entirely trivial; problems
- analytic renormalization: no MS scheme,
- stable nontrivial fixed point at $d > 2$: dimensional regularization insufficient for thermal fluctuations.

Renormalize on a ray with intermediate Λ renormalization (Adzhemyan, JH, Kompaniets, Vasil’ev 2005):
- fix the ratio $(d - 2)/\varepsilon = 2\zeta$ to restore MS scheme,
- introduce explicit cutoff Λ, renormalize out large Λ terms [replace primary (physical) bare parameters by secondary ones].
Minimal subtractions on rays

Two-parameter renormalization not entirely trivial; problems

- analytic renormalization: no MS scheme,
- stable nontrivial fixed point at $d > 2$: dimensional regularization insufficient for thermal fluctuations.

Renormalize on a ray with intermediate Λ renormalization (Adzhemyan, JH, Kompaniets, Vasil’ev 2005):

- fix the ratio $(d - 2)/\varepsilon = 2\zeta$ to restore MS scheme,
- introduce explicit cutoff Λ, renormalize out large Λ terms [replace primary (physical) bare parameters by secondary ones],
- the remainder is analytic continuation from $d < 2$.
Two expansions for the skewness factor

Two complementary ways to calculate the universal ratio Q:
Two expansions for the skewness factor

Two complementary ways to calculate the universal ratio Q:

- In ε, Δ expansion on the ray $\zeta = (d - 2)/2\varepsilon = \text{const}$:

$$Q(\varepsilon) = \frac{r \partial_r S_2(r)}{(-S_3(r))^{2/3}} = \varepsilon^{1/3} \sum_{k=0}^{\infty} \Psi_k(\zeta) \varepsilon^k.$$
Two expansions for the skewness factor

Two complementary ways to calculate the universal ratio Q:

1. In ε, Δ expansion on the ray $\zeta = (d - 2)/2\varepsilon = \text{const}$:

$$Q(\varepsilon) = \frac{r \partial_r S_2(r)}{(-S_3(r))^{2/3}} = \varepsilon^{1/3} \sum_{k=0}^{\infty} \Psi_k(\zeta) \varepsilon^k.$$

2. In ε expansion with coefficients singular, when $d \to 2$:

$$Q(\varepsilon) = \varepsilon^{1/3} \sum_{k=0}^{\infty} Q_k(d) \varepsilon^k.$$
Two expansions for the skewness factor

Two complementary ways to calculate the universal ratio Q:

- In ε, Δ expansion on the ray $\zeta = (d - 2)/2\varepsilon = \text{const}$:

$$Q(\varepsilon) = \frac{r\partial_r S_2(r)}{(-S_3(r))^{2/3}} = \varepsilon^{1/3} \sum_{k=0}^{\infty} \Psi_k(\zeta) \varepsilon^k.$$

- In ε expansion with coefficients singular, when $d \to 2$:

$$Q(\varepsilon) = \varepsilon^{1/3} \sum_{k=0}^{\infty} Q_k(d) \varepsilon^k.$$

These are two different subsequences of the double series

$$Q(\varepsilon, d) = \varepsilon^{1/3} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \left[2\varepsilon/(d - 2)\right]^k q_{kl} \left[(d - 2)/2\right]^l.$$
Improved ε expansion

Combine the information from both expansions

$$Q_{eff}^{(n)} = \varepsilon^{1/3} \left[\sum_{k=0}^{n-1} Q_k(d) \varepsilon^k + \sum_{k=0}^{n-1} \Psi_k \left(\frac{d - 2}{2\varepsilon} \right) \varepsilon^k - \sum_{k,l=0}^{n-1} \left(\frac{2\varepsilon}{d - 2} \right)^k q_{kl} \left(\frac{d - 2}{2} \right)^l \right].$$

Subtraction term to account for double counting in the overlap region.
Improved ε expansion

Combine the information from both expansions

$$Q^{(n)}_{\text{eff}} = \varepsilon^{1/3} \left[\sum_{k=0}^{n-1} Q_k(d) \varepsilon^k + \sum_{k=0}^{n-1} \Psi_k \left(\frac{d - 2}{2\varepsilon} \right) \varepsilon^k \right. \left. - \sum_{k,l=0}^{n-1} \left(\frac{2\varepsilon}{d - 2} \right)^k q_{kl} \left(\frac{d - 2}{2} \right)^l \right].$$

Subtraction term to account for double counting in the overlap region.
Improved two-loop Kolmogorov constant

Comparison of one-loop and two-loop results for C_K:

<table>
<thead>
<tr>
<th>n</th>
<th>C_ε</th>
<th>$C_{\varepsilon,\Delta}$</th>
<th>C_δ</th>
<th>C_{eff}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.47</td>
<td>1.68</td>
<td>1.37</td>
<td>1.79</td>
</tr>
<tr>
<td>2</td>
<td>3.02</td>
<td>3.57</td>
<td>4.22</td>
<td>2.37</td>
</tr>
</tbody>
</table>

- C_ε – ε expansion
- $C_{\varepsilon,\Delta}$ – double expansion
- C_δ – overlap correction
- C_{eff} – improved ε expansion
Improved two-loop Kolmogorov constant

Comparison of one-loop and two-loop results for C_K:

<table>
<thead>
<tr>
<th>n</th>
<th>C_ε</th>
<th>$C_{\varepsilon,\Delta}$</th>
<th>C_δ</th>
<th>C_{eff}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.47</td>
<td>1.68</td>
<td>1.37</td>
<td>1.79</td>
</tr>
<tr>
<td>2</td>
<td>3.02</td>
<td>3.57</td>
<td>4.22</td>
<td>2.37</td>
</tr>
</tbody>
</table>

- C_ε – ε expansion
- $C_{\varepsilon,\Delta}$ – double expansion
- C_δ – overlap correction
- C_{eff} – improved ε expansion

Recommended experimental value: $C_K = 2.0$ (Sreenivasan, 1995).
Prandtl number for thermal conduction: $\Pr = \nu_0/\kappa_0 = 1/u$.
Turbulent Prandtl number

Prandtl number for thermal conduction: \(\text{Pr} = \nu_0 / \kappa_0 = 1 / u. \)

Define turbulent (effective) inverse Prandtl number:

\[
 u_{\text{eff}} \equiv \frac{\Gamma_{\theta \theta'}}{(k, \omega = 0)} / \frac{\Gamma_{v v'}}{(k, \omega = 0)}.
\]
Prandtl number for thermal conduction: \(\Pr = \nu_0 / \kappa_0 = 1 / u. \)

Define turbulent (effective) inverse Prandtl number:

\[
u_{eff} \equiv \frac{\Gamma_{\theta\theta'}(k, \omega = 0)}{\Gamma_{vv'}(k, \omega = 0)}.
\]

Singular in \(d - 2 \) contributions cancel: two-loop correction small [Adzhemyan, JH, Kim & Sladkoff (2005)]:

\[
u_{eff} = \nu_*^{(0)} (1 - 0.0358 \varepsilon) + O(\varepsilon^2), \quad \nu_*^{(0)} = \frac{\sqrt{43/3} - 1}{2}, \quad d = 3.
\]
Turbulent Prandtl number

Prandtl number for thermal conduction: \(\text{Pr} = \nu_0 / \kappa_0 = 1/u. \)

Define turbulent (effective) inverse Prandtl number:

\[
 u_{\text{eff}} \equiv \Gamma_{\theta \theta}'(k, \omega = 0) / \Gamma_{\nu \nu}'(k, \omega = 0).
\]

Singular in \(d - 2 \) contributions cancel: two-loop correction small [Adzhemyan, JH, Kim & Sladkoff (2005)]:

\[
 u_{\text{eff}} = u_{\text{eff}}^{(0)} (1 - 0.0358 \varepsilon) + \mathcal{O}(\varepsilon^2), \quad u_{\text{eff}}^{(0)} = \frac{\sqrt{43/3} - 1}{2}, \quad d = 3.
\]

At \(\varepsilon = 2 \) the turbulent Prandtl number \(\text{Pr}_t \) close to accepted experimental value \(\text{Pr}_t \approx 0.81 \):

\[
 \text{Pr}_t^{(0)} \approx 0.72, \quad \text{Pr}_t \approx 0.77.
\]
two-loop RG analysis of stochastic Navier-Stokes with powerlike forcing correlations
Conclusion

- two-loop RG analysis of stochastic Navier-Stokes with powerlike forcing correlations
- two-loop RG analysis of Navier-Stokes advected scalar
Conclusion

- two-loop RG analysis of stochastic Navier-Stokes with powerlike forcing correlations
- two-loop RG analysis of Navier-Stokes advected scalar
- account of finite-band-width injection through nearly 2^d model
two-loop RG analysis of stochastic Navier-Stokes with powerlike forcing correlations

two-loop RG analysis of Navier-Stokes advected scalar

account of finite-band-width injection through nearly $2d$ model

combined account of subsequences from ε expansion and ε, Δ expansion
Conclusion

- two-loop RG analysis of stochastic Navier-Stokes with powerlike forcing correlations
- two-loop RG analysis of Navier-Stokes advected scalar
- account of finite-band-width injection through nearly $2d$ model
- combined account of subsequences from ε expansion and ε, Δ expansion
- significant improvement of numerical results