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1 The problem

Spreading processes in physical, chemical, biological, ecological and sociolo-
gical systems: autocatalytic reactions, percolation in porous media, forest
fires, epidemic diseases, and so on.

Typical model: Random walk of two species on a lattice plus reaction:

Infection: A+ B — B
Healing: B — A

Absorbing state: No infected individuals, pg = 0.

Fluctuating state: pp = p(t,x) is a random quantity; (p(t,x)) # 0.

Continuous (second-order) phase transition between these nonequilibrium
steady states.

Universal scaling behaviour; critical exponents; new universality classes.

Reference: Hinrichsen H 2000 Adv. Phys. 49 815



2 The model

Directed bond percolation process = simple epidemic process with recovery
= Gribov’s process = stochastic first Schlogl reaction

Continuous model: stochastic PDE

(9t¢(t, X) = )\0 {(_TO + 82)¢(t7 X) - 90¢2(t7 X)/Z} + C(tv X), (1)

YP(t,x) > 0 — the agent’s density

0% — Laplace operator

Ao and gy — positive parameters

70  (T'—T,) deviation of the “temperature” from its critical value
d — the dimension of the x space

((t,x) — Gaussian noise with correlation function

(C(t,x)C(t, %)) = gohoth(t,x) 6(t — t")6 D (x — x'). (2)



3 Field theoretic formulation

Stochastic problem (1), (2) is equivalent to the “Reggeon field theory” with
the action functional

GoAo

S(6,0h) = 6l (=0, + 200* = Agm ) + L2220

(1) —¥Ty?) (3)

the integrations are implied:
vlow = [ar [ axelexa0.x)
L/JT(ZL’) = L/JT(t, x) is the auxiliary “response field.”

Correlation functions of the stochastic problem = functional averages with
weight exp S.

The linear response function of the problem (1), (2) is given by the Green
function

G = wlhawen = [out [Do vf@uw) expsievh,



Feynman rules: the bare propagator Gy = <¢¢T)0:

Go(t, k) =0(t) exp {—)\O(kQ +179)} > Go(w, k) = —iw + Ao (K2 + 1)

and the two triple vertices ~ (11)%), T2,

Absorbing phase:

Anomalous phase:

(b ) £0
Phase transition = breakdown of the symmetry:

¢(t7 X) - /T(_ta _X)7 wT(ta X) - w(_ta _X)7 g0 — —4go- (5)

Critical exponents 7, v, 2z are known to €2, where ¢ = d — 4.

Reference: Janssen H-K and Tauber U C 2004 Ann. Phys. (NY) 315 147.



4 Turbulent mixing
Inclusion of the velocity field v = {v;(¢,x)}:

Oy — V=0 +v;0;, 0; = 8/8.132 (6)

Incompressibility: d;v; = 0.

Obukhov-Kraichnan’s rapid-change model: Gaussian distribution with the
correlation function:

(vi(t,x)v;(t',x")) = 6(t — ') Dyj(r), r=x—-%

dk 1 )
P;(k) 7z explik), k= [k (7)

D;i(r) = Dy /

k>m (QW)d

P;j(k) = &;j — k;k;/k* — transverse projector
Dy >0

0 < & <2 free parameter (Holder exponent)
the realistic (“Kolmogorov”) value £ = 4/3
the IR cutoff at k=m =1/L

L — the integral turbulence scale.



Field theoretic model of the three fields ® = {4/, wT, v} with the action

S(®) = (=4 2007 M+ 2 () - ) + S(v). (8

v) = —% / dt / dx / dx' vi(t, %) D55 (r)v; (1, %), (9)

D_l(r) X Do_l'r_Qd_5

where

— the kernel of the inverse linear operation for the function D;;(r) in (7).

Feynman rules involve the new propagator (vv)y and the new vertex

—¢T(v0)y.

The coupling constants:
Uy = 93 ~ A4_d, Wy = Do/)\o ~ Ag, (10)

A — UV momentum scale.



5 UV divergences and the renormalization
The coupling constants:

Uy = gg ~ A wy = Do/ Ny ~ AS, (11)
A — UV momentum scale.

The model is logarithmic (the both coupling constants gy and wq are
simultaneously dimensionless) at d = 4 and & = 0.

The UV divergences = singularities at ¢ = (4 —d) — 0, £ — 0.



Dimensional analysis (“power counting”): superficial UV divergences can
be present in the 1-irreducible functions

<¢T¢> with the counterterms @bTaﬂb, ¢T02¢, ¢T¢,

<¢T¢¢> with the counterterm @DT@DQ,
<¢T¢T¢) with the counterterm (LDT)Q?/J,
<¢T¢U> with the counterterm LDT(Ua)lb

Galilean symmetry: divergence in the function

(@DT"?UU) with the counterterm ¢;T¢;U2

is forbidden;

the counterterms @bTat@b and zﬂ(v@)w appear in the combination @bTvtw.

Symmetry (5): trilinear counterterms enter the renormalized action as the
combination (11)2) — 1pfe)2,



All these terms are present in the action (8), so the model is multiplicatively
renormalizable.

The renormalized action:
Sp(®) = YT (=Z1V, + Z,00% — ZyAr) ¢ +
A
+ Zi5 (D% = 01e?) + S(v). (12)

A, T, g — are renormalized analogs of the bare parameters,
it is the reference mass in the MS scheme,

S(v) is not renormalized:

D() = wo)\o = w)\,ug. (13)



Multiplicative renormalization of the fields
Y=z, Y- ?NZJ, v —vZ,

and the parameters:

N=MNZy, T=7Z:, go=gu*Z,; wy=wptZ,. (14)

The constants in Eqs. (12) and (14) are related as follows:

Zy=ZyZy = ZuZyZy Zo= ZyZpZs, Zs= ZyZyZrZx,

Zy = ZyZyZ,Z2\=Z;ZpZyZy, 1= Z,Z). (15)
There are exact relations between them due to the symmetries:
Zy=Zy, Zy=1, Z,=2Z;" (16)
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The constants Z1—Z4 are calculated directly from the diagrams, then the
constants in (14) are found from (15).

The one-loop results read:

3
lel-l—ﬁ, Z2:1+£— v Z3:]_-|—£

u
— Zyi=1+— 17
4e 8 4¢’7 27 +5’ (17)

where we passed to the new couplings,

u— u/167%, w — w/1677 (18)
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(W) = —{—wZy + \p*Zy + AT 25} + % +<>—> + +£3—>

)
Ww*wgzﬁzAu SN +%A
‘
(WTpv) = —ipZy + + A

Figure 1: The one-loop approximation of the relevant 1-irreducible Green
functions
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6 RG functions and RG equations

The action functionals are related as
SR(q)a €, :LL) - S(q)a 60)
so that the Green functions are related as

N
Gleo,...)=Z," Z, Grle.p,...). (19)

Here: Ny and N,+ — the numbers of corresponding fields
eo = { Ao, 7o, Ug, wo} — the full set of bare parameters
e = {\, 7,u,w} — their renormalized counterparts.

Let ﬁu be the differential operation pd, for fixed eg; operate on both
sides of the equation (19) with it. This gives the basic RG equation:

{DRG + Nﬂ}%/) + Nw'i"yw'i‘} GR(€7 Hy - ) =0, (20)

where Dy is the operation ﬁu expressed in the renormalized variables:

DRG = Du + Buau + Bwaw - ’YAD)\ - VTDT- (21)
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Here D, = x0, for any variable z, the anomalous dimensions v are defined
as N
vr =D, InZp for any quantity F, (22)

and the 3 functions for the couplings u and w are

Bu=Duu=ul—c—7), Buw=Dyw=w[-§— "y (23)

One-loop results:

o S

3u 3w 3u 3w
rT— TS T T u T TS T o 24
v s 1 5 " 5 (24)

2

with corrections of order u?, w?, uw and higher.
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7 Fixed points and IR scaling regimes

Long-time large-distance asymptotic behaviour is determined by the IR
attractive fixed points of the RG equations:

Bultg,wy) =0, By(uy, wy) =0. (25)

The fixed point is IR attractive if the matrix

= {Qi; = 95i/9y;7}, (26)
is positive (eigenvalues have positive real parts).
The one-loop expressions:

By =u(—c+3u/24+3w/2), [y=w(=€+u/8+3w/4). (27)

l
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There are four different fixed points.

1. Gaussian (free) fixed point:
U*:UJ*:O, Qu:—E, Qw:—£

(all these expressions are exact).

2. w, = 0 (exact result to all orders), u, = 2¢/3; Q, = ¢, Q, = = + ¢/12.

Effects of turbulent mixing are irrelevant; the basic critical exponents are
independent on £ and coincide to all orders with their counterparts for the
“pure” DP class.

3. u, =0, w, = 4£/3 (exact); Q, = —e + 2, Q, = £ (exact).

The nonlinearity (L/JT)QQ/J —pTep? of the DP model is irrelevant, and we arrive
at the rapid-change model of a passively advected scalar field ). For that
model, the 3 function is given exactly by the one-loop approximation, hence
the exact results for w, and €.
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4. u, = 4(e = 2£) /5, w, = 2(126 — £)/15. The eigenvalues:

1
XE = o (115 _ 126 + /16122 — 8242 + 110452) (28)

are both real for all € and ¢ and positive for £/12 < £ < /2.

This fixed point corresponds to a new nontrivial IR scaling regime (uni-
versality class), in which the nonlinearity of the DP model (3) and the
turbulent mixing are simultaneously important; the corresponding critical
exponents depend on the both RG expansion parameters ¢ and £ and are
calculated as double series in these parameters.
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E=¢/2

FP3: |Passive Scalar

FP4: New Class

E=¢/12

FP1: Gaussian FP2: DP Class

Figure 2: Regions of stability of the fixed points in the model (8).
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8 Critical dimensions

Four fixed points of the model (3) correspond to four possible IR scaling
(self-similar) regimes; for given ¢ and £ only one of them is IR attractive
and governs the IR behaviour. The Green functions have scaling form.

The linear response function has the form

X T

G(t,X) = :E_QAw F (tl/Aw, tA-r/Aw> ) r = |X| (29)

with some scaling function F.

For a given point, the critical dimensions Ay of the IR relevant quantities
f are given by the relations

Ay = Ap=d/2+7],
Ar = 24797, Ay=2-7
2A, = A, —¢ (30)

with 77 = vp(w, ws).
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From the explicit one-loop expressions (24) we find:

1. Gaussian (free) fixed point; all the expressions are exact:

Ap=df2, Ar=A, =2

2. Directed percolation (DP) regime; mixing irrelevant:

Ap=2-Tc/12, Ar=2—c/4, A,=2-¢/12.

The conventional critical exponents are related to (32) as

z=A,, 1l/v=A;, d+n=2Ay.

The O(e?) calculation is in progress.

20
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3. Obukhov-Kraichnan exactly soluble regime; all results exact:

Ae=Ar=2-£ Ay=d/2. (33)

4. New universality class (both mixing and DP interaction are relevant):
Apy=24(-3¢)/5, Ay =2—(e+3£)/5, A, =2—¢ (exact). (34)

The first two dimensions have nontrivial corrections in € and £.
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9 Spreading of a cloud

The mean-square radius R(t) at time ¢t > 0 of a cloud of “infected” particles,

which started from the origin x’ = 0 at time ¢’ = 0:

RQ(t):/dxeG(t,x), Gt,x) = (W(t, x0T (0,0)), ==[x|. (35)

Substituting the scaling form of the response function

YN x T
G(t,x)== wF(tl/Aw’tAr/Aw>

gives

2 d+2—2A,)/ A, T
(1) = H22/A p (D)

where the scaling functions f and F' are related as follows:

(2) = / dx 22D F(z, ).

22
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At the critical point (7 = 0) the power law holds:

R2<t) o $(dF2-28y)/A, _ t(2—27;;,)/(2_~y;); (37)

The Gaussian fixed point: the usual “1/2 law” R(t) oc t1/? for the ordinary
random walk is recovered.

The passive-scalar fixed point: the exact result R(t) oc t'/2=9),

For the most Kolmogorov value £ = 4/3 this gives R(t) o t%/? in agreement
with Richardson’s “4/3 law” dR?/dt oc R*/3.

For the other two fixed points the exponents in (36), (37) are given by
infinite series in £ (point 2) or ¢ and £ (point 4).
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10 Conclusion

— four critical regimes, associated with four fixed points of the RG
equations:

— Gaussian fixed point (ordinary diffusion or random walk);
— DP process, advection irrelevant;

— passively advected scalar field (infection processes irrelevant); the real
cases d = 2 or 3 and £ = 4/3 belongs to this regime;

— new nonequilibrium universality class, in which both the reaction and
the turbulent mixing are relevant; the critical exponents are double series

in ¢ and e =4 —d.

— its region of IR stability /12 < £ < ¢/2 differs from naive expectation
£>0and e > 0.
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Further investigation (in progress):

— anisotropy of the experimental set-up,

— compressibility, non-Gaussian character and finite correlation time of the
advecting velocity field,

— effects of immunization (memory);

— interaction of the order parameter with other relevant degrees of freedom
(mode-mode coupling),

— feedback of the reactants on the dynamics of the velocity (forest fires,
chemical reactions).
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Thank you for your attention!
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