

BLTP JINR, Dubna, September 25, 2010

High Energy Machines at JINR, Dubna

the Laboratory of High Energy Physics

10 GeV Synchrophasotron put in operation in 1957

the first superconducting accelerator for relativistic ions NUCLOTRON launched in 1993

Nuclotron-based Ion Collider fAcility (NICA)

Flagship project at JINR/Dubna Based on the technological development of the existing Nuclotron facility Optimal usage of the existing infrastructure Modern machine which incorporates new technological concepts Operational ~ 2016

NICA advantages: optimal energy range $\sqrt{s_{NN}}$ = 4-11 GeV (system of max. baryon density) rich nomenclature of colliding systems (from p+p to Au+Au) high luminosity (up to 10²⁷ cm⁻²s⁻¹ for Au⁷⁹⁺)

The goal of the project is

construction at JINR of a new accelerator facility, that provides

1a) Heavy ion colliding beams ¹⁹⁷Au⁷⁹⁺ x ¹⁹⁷Au⁷⁹⁺ at

$$\sqrt{s_{NN}} = 4 \div 11 \text{ GeV} (1 \div 4.5 \text{ GeV/u} \text{ ion kinetic energy})$$

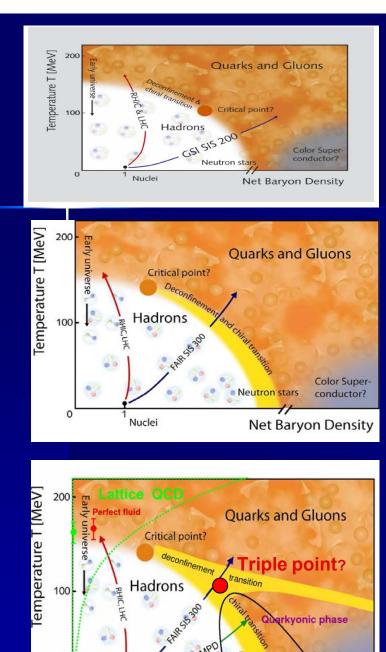
at L_{average} = 1E27 cm⁻²·s⁻¹ (at $\sqrt{s_{NN}} = 9 \text{ GeV}$)

1b) Light-Heavy ion colliding beams of the same energy range and luminosity

2) Polarized beams of protons and deuterons in collider mode:

p↑p↑
$$\sqrt{s_{pp}}$$
 = 12 ÷ 27 GeV (5 ÷ 12.6 GeV kinetic energy)
d↑d↑ $\sqrt{s_{NN}}$ = 4 ÷ 13.8 GeV (2 ÷ 5.9 GeV/u ion kinetic energy)
 $L_{average} \ge 1E30 \text{ cm}^{-2} \cdot \text{s}^{-1}$ (at $\sqrt{s_{pp}}$ = 27 GeV)

3) The beams of light ions and polarized protons and deuterons for fixed target experiments:


Li \div Au = 1 \div 4.5 GeV /u ion kinetic energy p, p[↑] = 5 \div 12.6 GeV kinetic energy d, d[↑] = 2 \div 5.9 GeV/u ion kinetic energy

4) Applied research on ion beams at kinetic energy from 0.5 GeV/u

up to 12.6 GeV (p) and 4.5 GeV /u (Au)

the study of spin physics is aimed
 to shed light on the origin of spin
 to define the nuclean anin structure

- to define the nucleon spin structure

NICA-MPD.

Compact Stars

0.0

Nuclei

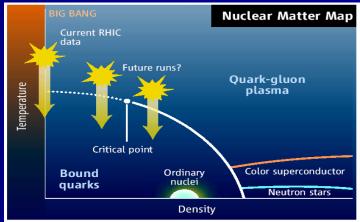
nn

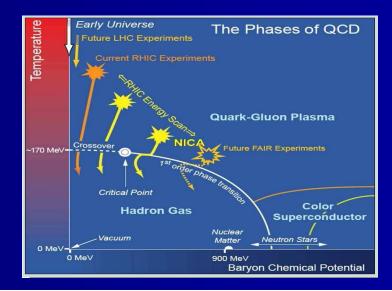
Quarkyonic phase

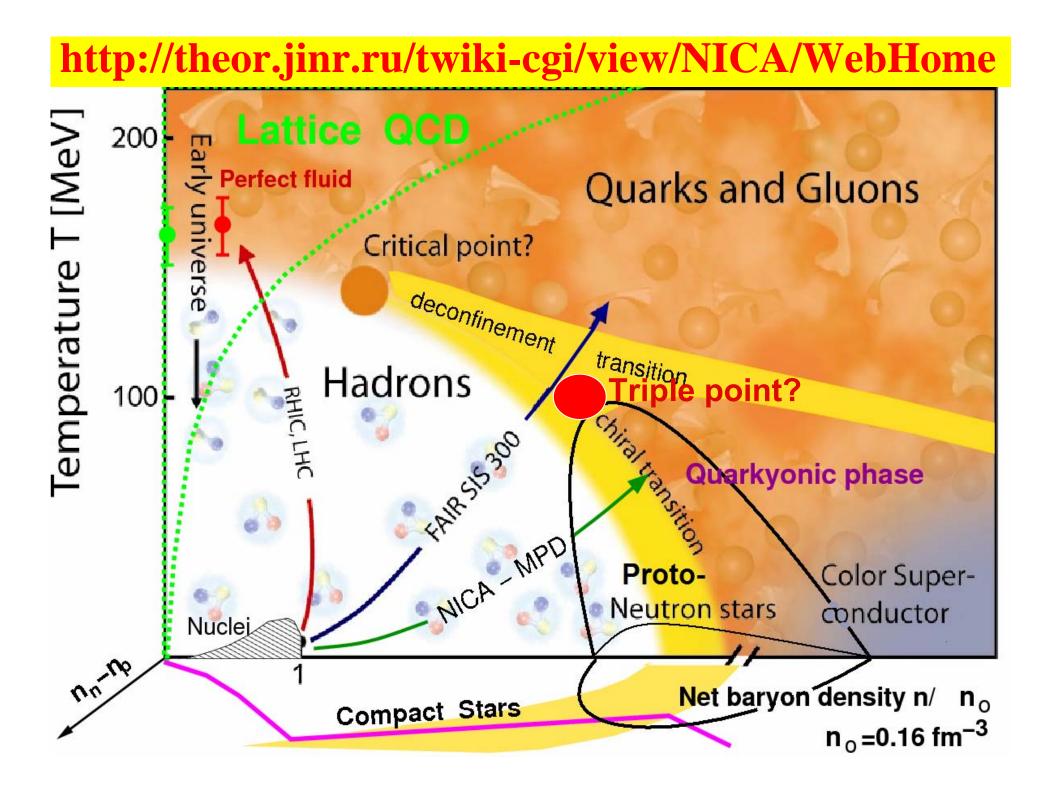
Color Super-

 $n_0 = 0.16 \text{ fm}^{-3}$

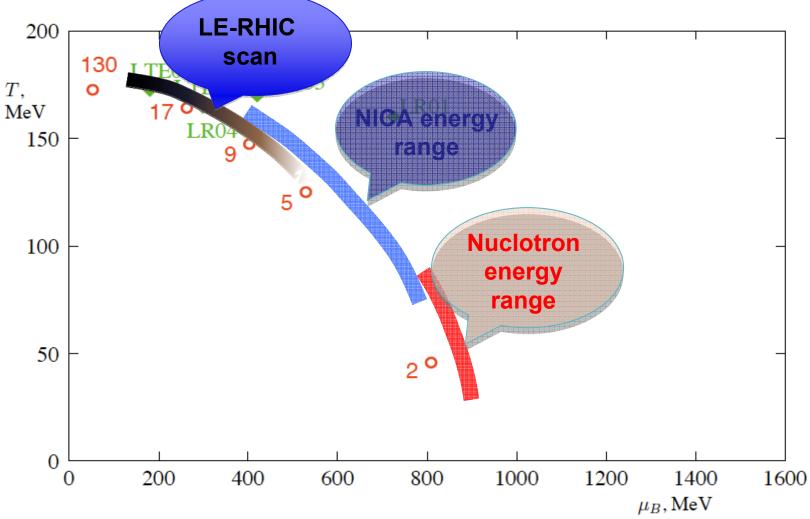
conductor

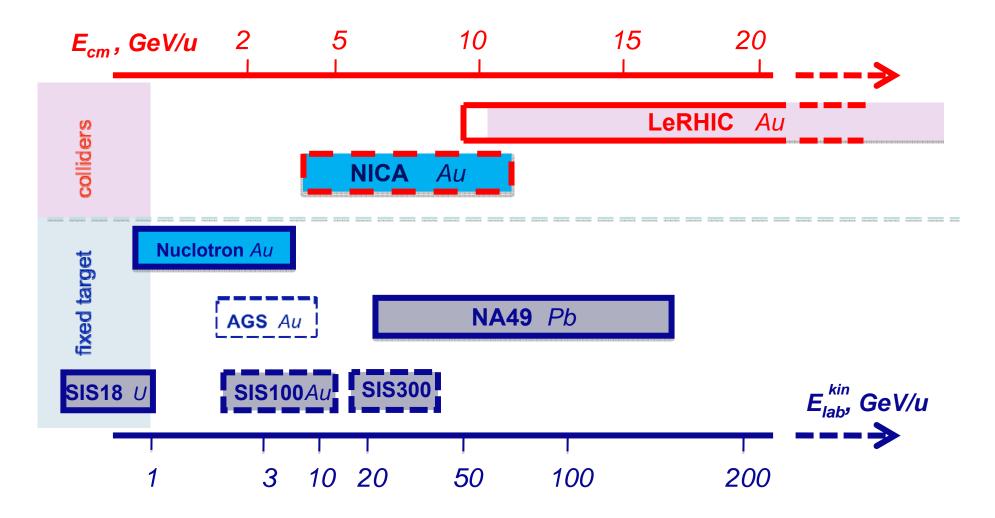

Net baryon density n/ no


ansition

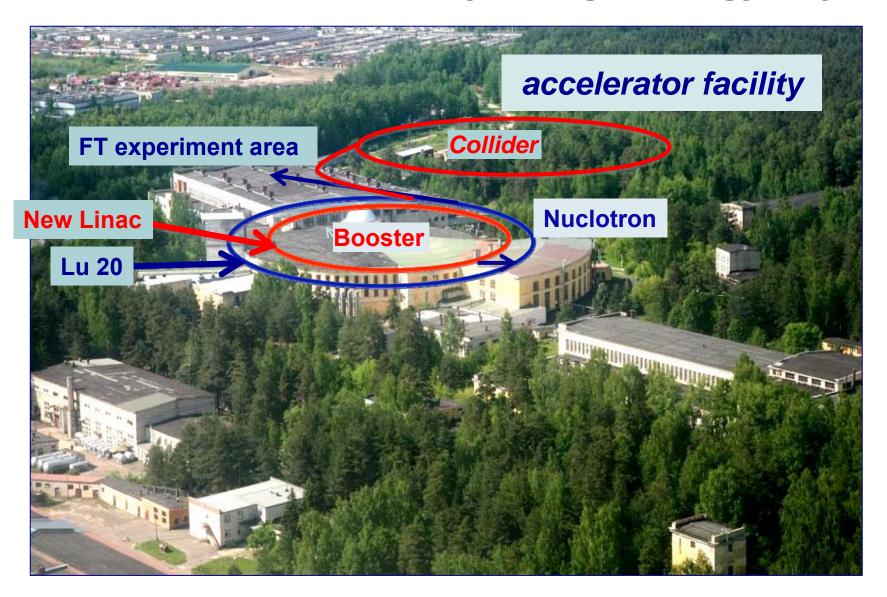

Neutron stars

Proto-





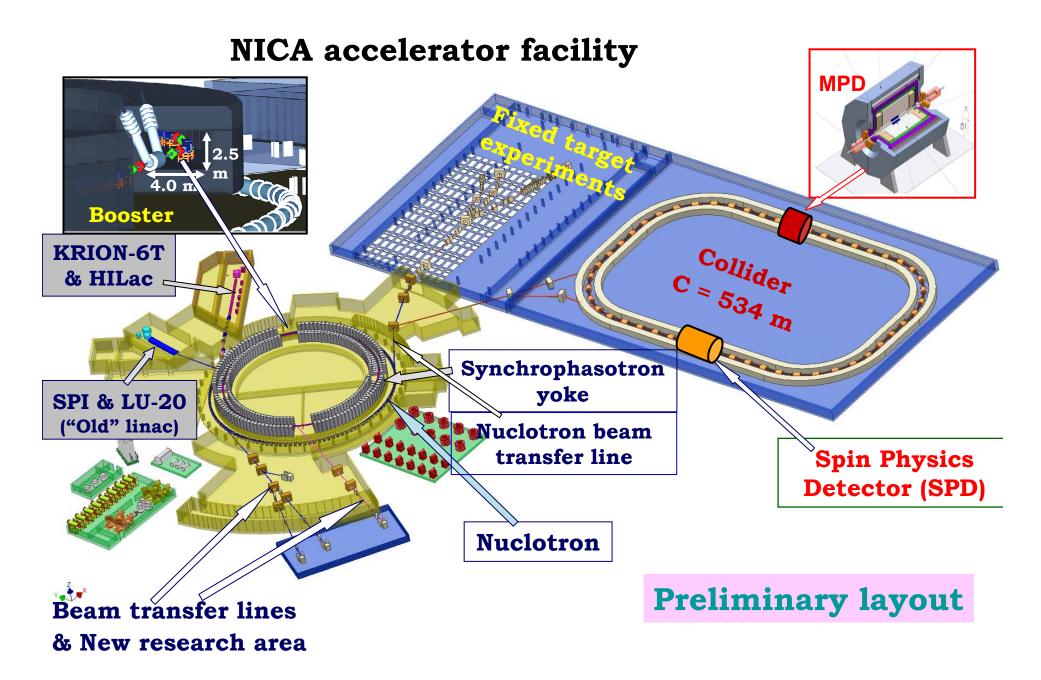
Optimal energy region to reach the highest possible baryon density heavy ion collision at $\sqrt{S_{NN}} = 4 - 11 \text{ GeV/u}$ **Baryon density in A+A collisions** J.Randrup, J.Cleymans PR C74 (2006)047901. J.Randrup, CPOD2010 Excitation energy density ε^* (MeV/fm³) 00^{00} 00^{00} 00^{00} 00^{00} 00^{00} 150 10+50 Phase trajectories Hadronic freeze-out $\epsilon^* = m_N \rho$ Temperature T (MeV) . 00000 - 0 NICA/MPD 0 ۰o S=0 & Q/B=0.4 50 **° BHICCollider** 3-fluid (5) 30 20 UrQMD (5) FAIR fixed target 15 4 8 10 Compression ρ/ρ_s 0.00 0.04 0.16 0.08 0.12Net baryon density $\rho_{\mathsf{P}}~(\text{fm}^{\text{-3}})$ Nuclotron energies


Available energy regions & its extension

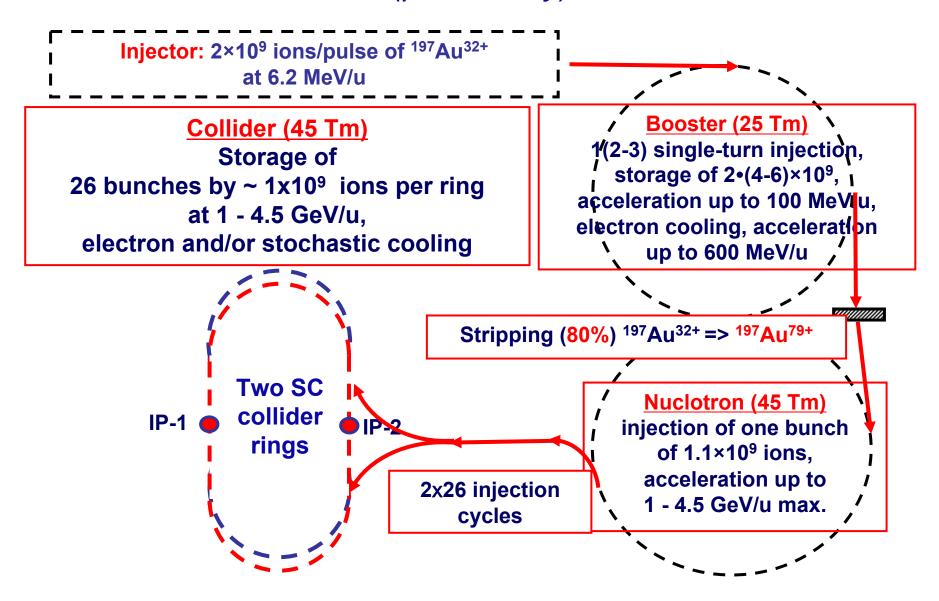
Energy regions covered by present & future experiments

Veksler & Baldin Laboratory of High Energy Physics

Nuclotron


□ JINR HEP basic facility, in operation since
'93
based on the unique technology of
super-conducting fast cycling magnets
developed in JINR
provides proton, polarized deuteron
& multi charged ion beams Nuclotron development plans:
□ Nuclotron-M (vac., PS, orbit corr.) 2010
Nuclotron-N (Krion-6, LU-20, RF) 2012
□ Nuclotron-N* (New Linac, Booster) 2013

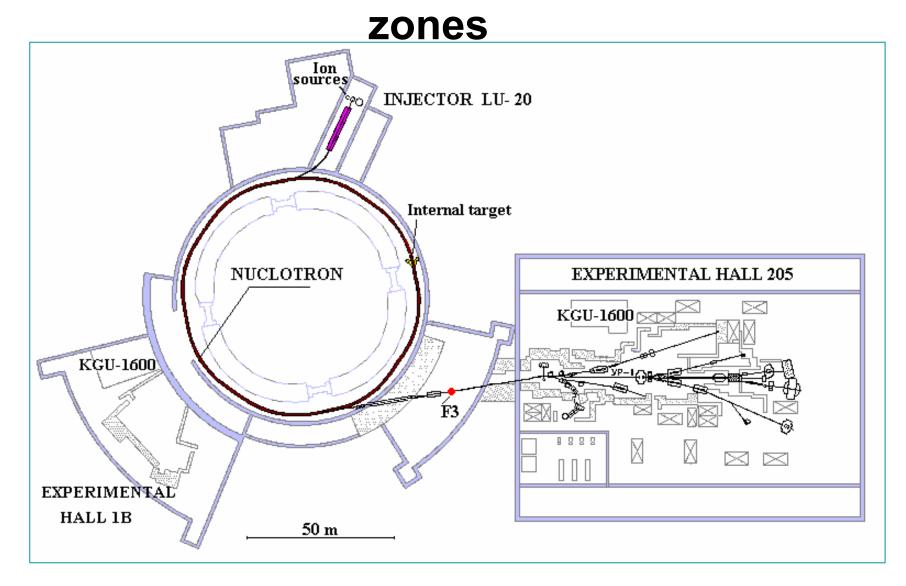
	Parameter	desig n	obtaine d 1 <z<4< th=""></z<4<>
		I <z<92< th=""><th>1<z<4 2</z<4 </th></z<92<>	1 <z<4 2</z<4
	Energy, GoV/amu	6,A/Z= 2	5.2
	Magnetic field, T	2.0	1.8
	Inj. Ener.	5	5
١	/acuum	1·10 ⁻⁷	2·10 ⁻⁹
	pressure,Torr cold chamber	1·10 ⁻ 10	1·10 ⁻¹⁰
	Repetition rate,	0,5	0,2
	Field ramp rate, (T/	s)	
	stand testing	4	2
	in the ring	4,1	1,0

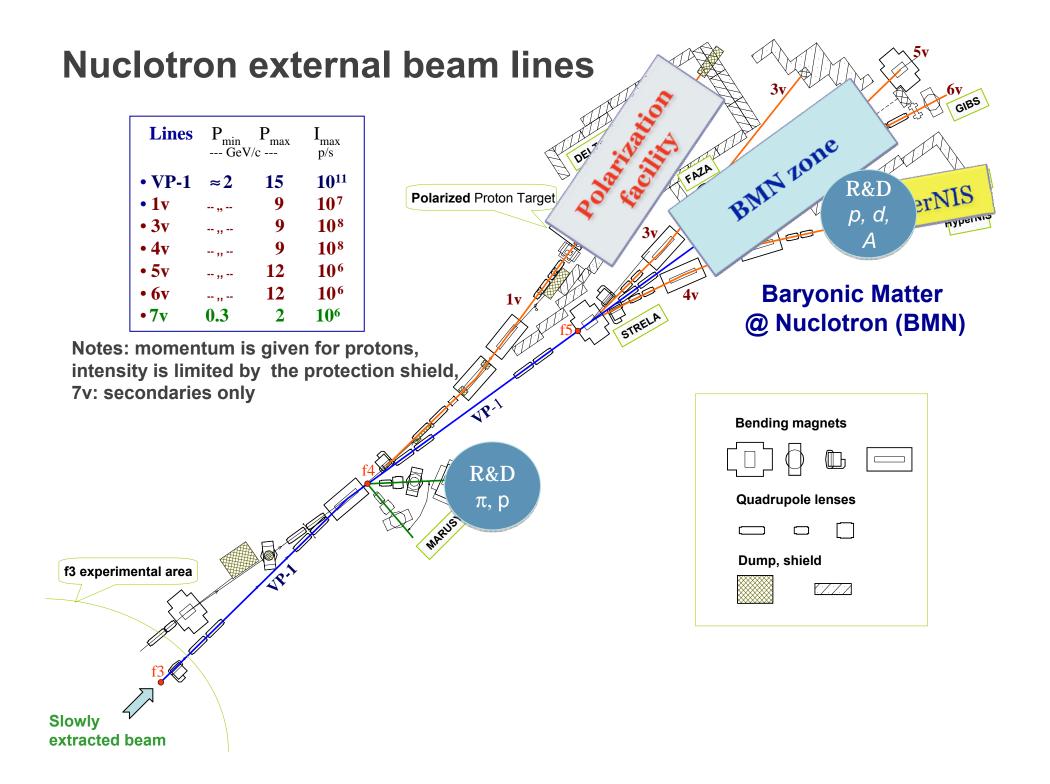


Nuclotron beam intensity (particle per						
Beam	Current	lon source type	New ion source + booster <mark>(2013)</mark>			
р	3.10 ¹⁰	Duoplasmotron	5·10 ¹²			
d	3.10 ¹⁰	,,	5·10 ¹²			
⁴ He	8.10 ⁸	,,	1.10 ¹²			
d↑	2.10 ⁸	ABS ("Polaris")	1.10 ¹⁰ <i>(SPI)</i>			
⁷ Li	8.10 ⁸	Laser	5.10 ¹¹			
^{11,10} B	1.10 ^{9,8}	,,				
¹² C	1.10 ⁹	,,	2.10 ¹¹			
²⁴ Mg	2·10 ⁷	,,				
¹⁴ N	1·10 ⁷	ESIS ("Krion-2")	5.10 ¹⁰			
²⁴ Ar	1.10 ⁹	,,	2.10 ¹¹			
⁵⁶ Fe	2.10 ⁶	,,	5·10 ¹⁰			
⁸⁴ Kr	1.104	,,	1.10 ⁹			
¹²⁴ Xe	1.104	,,	1.10 ⁹			
¹⁹⁷ Au	-	,,	1.10 ⁹			

	Compa	<u>es</u> per cycle		
Beam		Nuclotron-M (2010)	Nuclotron-N (2012)	New ion source + booster (2014)
р		8.10 ¹⁰	5·10 ¹¹	5·10 ¹²
d		8.10 ¹⁰	5·10 ¹¹	5·10 ¹²
⁴ He		2·10 ⁹	3·10 ¹⁰	1.10 ¹²
d↑		2·10 ⁸	7·10 ¹⁰ (SPI)	7.10 ¹⁰ (SPI)
⁷ Li ⁶⁺		7·10 ⁹	3·10 ¹⁰	5·10 ¹¹
¹² C ⁶⁺		6·10 ⁹	3·10 ¹⁰	3·10 ¹¹
¹⁴ N ⁷⁺		3·10 ⁷	3·10 ⁸	5·10 ¹⁰
²⁴ Mg ¹²⁺		7·10 ⁸	4·10 ⁹	5·10 ¹⁰
⁴⁰ Ar ¹⁸⁺		8·10 ⁶	2·10 ⁹	2·10 ¹⁰
⁵⁶ Fe ²⁸⁺		4·10 ⁶	2·10 ⁹	5·10 ¹⁰
⁵⁸ Ni ²⁶⁺				
⁸⁴ Kr ³⁴⁺		2·10 ⁵	1.10 ⁸	1.10 ⁹
¹²⁴ Xe ^{48/42+}		1.10 ⁵	7·10 ⁷	1.10 ⁹
¹⁸¹ Ta ⁶¹⁺				
¹⁹⁷ Au ^{65/79+}			1.10 ⁸	1.10 ⁹
²³⁸ U ²⁸⁺				

Heavy Ion Mode: Operation Regime & Parameters (preliminary)


19


Collider–general parameters (preliminary)

Β ρ max [T ⋅ m]	45.0
lon kinetic energy (Au79+), [GeV/u]	1.0 ÷ 4.56
Dipole field (max), [T]	2.0
Free space at IP (for detector)	9 m
Beam crossing angle at IP	0
Vacuum, [Torr]	10-11
Luminosity per one IP, cm ⁻² ·s ⁻¹	0.02÷5.0 ·10^27

Structure & details of the storage rings - subject of consideration by the forthcoming MAC

The plan of Nuclotron and experimental

Baryonic Matter @ Nuclotron (BMN) Schedule (preliminary)

Start of project preparation	2010
presentation for the consideration at PAC	2011
Experimental area preparation major subdetector for the starting kit are prototyped & mounted	2012
BMN starting kit commissioning	2013
Start of physics runs	2014

Fixed target experimental area

Should be properly developed in parallel with Nuclotron upgrade & NICA collider construction This is the high priority task, because it provides:

relevant experimental program in BM, (could be started in 2014)

proper monitoring of Nuclotron performance & beam parameters

highly required beams - to test MPD various subsystems

development of modern experimental *infrastructure*, organization necessary services, & training of corresponding *personal*

better integration of the JINR HEP facility into the common European research infrastructure Next MAC will be held on October 4-5 at Dubna.

The Committee is asked to review and offer comment/recommendations relative the Nuclotron-M/NICA and the accompanying R&D plan on sub-projects. In particular we request specific comments/recommendations in the following areas:

-Does NICA TDR (and namely approved NICA collider concept) describe a configuration that is likely to meet the proposed mission objectives (NICA physics case)?

- Does it meet physics demands on beams: possibility of energy scan (optics flexibility) at maximal required luminosity?

-Does the execution strategy of Nuclotron-M/NICA mesh with the requirements of NICA project? What recommendations and modifications to the R&D program would be effective?

NICA construction schedule

The main tasks for the NICA project In 2010:

- ✓ Conceptual / working design of the collider,
- Preparation of the project for the state expertise in accordance with regulations of Russian Federation (under preparation at *State Specialized Project Institute*, Moscow),
- ✓ Construction of SC magnets prototypes (booster and collider dipoles).

In 2011:

- ✓ Passing through the state expertise,
- Beginning of construction of the HILAC, KRION (working version), Booster, Collider elements,
- ✓ Stochastic cooling experiment at Nuclotron.

The NICA Collaboration

Budker INP

- **Booster RF system**
- Booster electron cooler
- ✓ Collider RF system
- Collider SC magnets (expertise)
- ✓ HV e-cooler for collider
- ✓ Electronics
- ✓ Injector linac (under discussion)

IHEP (Protvino): Injector Linac

FZ Jűlich (IKP): HV E-cooler & Stoch. cooling

Fermilab: HV E-cooler, Beam dynamics, Stoch. cooling

CERN: Beam dynamics, E-cooling, Acceler.

All-Russian Institute for Electrotechnique

HV Electron cooler

GSI/FAIR ipoles for Booster/SIS-100 ipoles for Collider

BNL (RHIC) Electron &

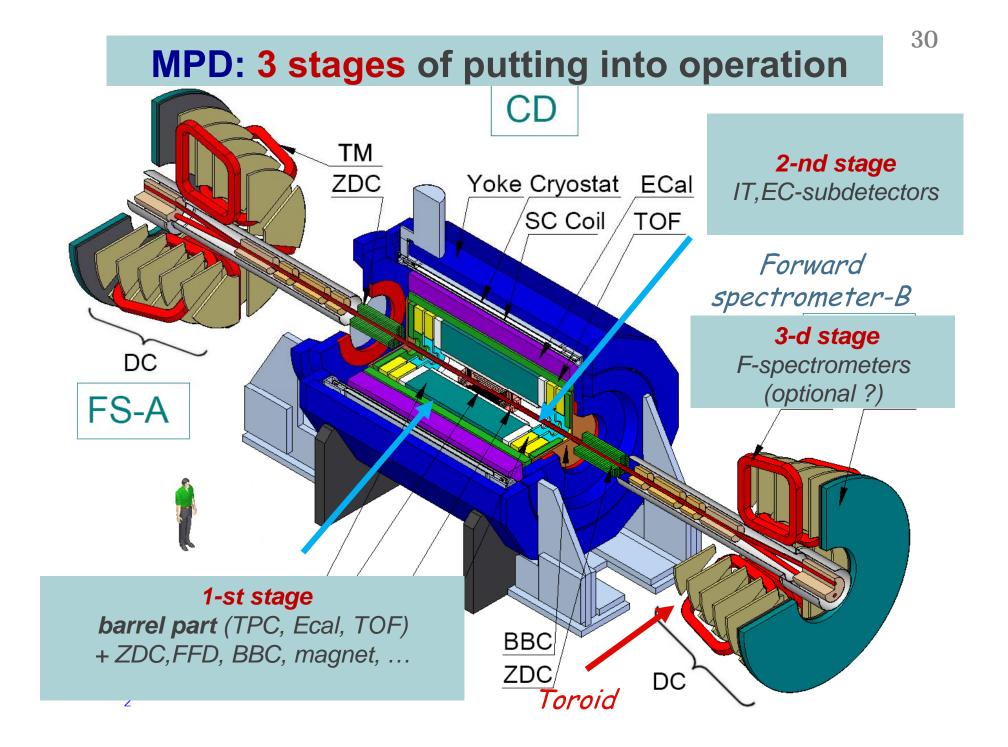
Stoch. Cooling

ITEP: Beam dynamics in the collider

Corporation "Powder Metallurgy" (Minsk, Belorussia): Technology of TiN coating of vacuum chamber walls for reduction of secondary emission

NICA construction schedule

	2010	2011	2012	2013	2014	2015	2016
ESIS KRION							
LINAC + channel							
Booster + channel							
Nuclotron-M							
Nuclotron-M \rightarrow NICA							
Channel to collider							
Collider							
Diagnostics							
Power supply							
Control systems							
Cryogenics							
MPD							
Infrastructure							


R&D Design Manufactrng Mount.+commis. Commis/or	r Operation
---	-------------

MPD

 Concept of universal detector for collider experiments; a central part inserted into 0.5T superconducting solenoid (D=5m, L=8m)

Could be used for both studies: BM & SP

Three stages of putting in operation

List of Tasks for MPD

.. To measure a large variety of signals at systematically changing collision parameters (energy, centrality, system size). *Reference data (i.e. p+p) will be taken*

at the same experimental conditions.

- **u** bulk observables (hadrons): 4π particle yields (OD, EOS)
- multi-strange hyperon production : yields & spectra (OD, EOS)
- electromagnetic probes (CSR, OD)
- azimuthal charged-particle correlations (LPV)
- event-by-event fluctuation in hadron productions (CEP)
- **\Box** correlations involving π , K, p, Λ (OD)
- □ directed & elliptic flows for identified hadron species (EOS,OD)
- **.**....

NICA White Paper (http://nica.jinr.ru) Round Table materials (http://jinr.ru/theor/)

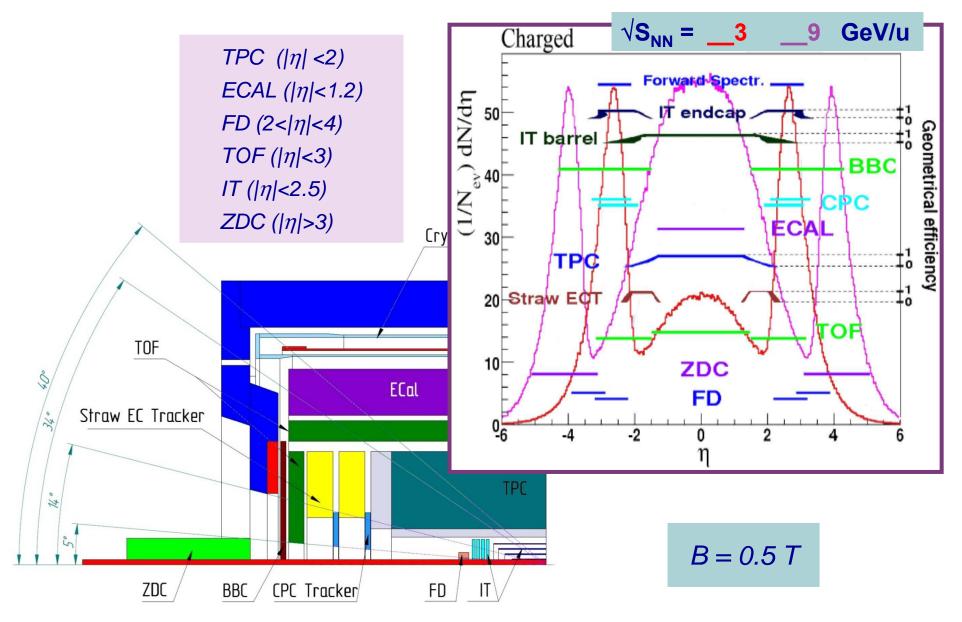
Timetable MPD

	Stage/Year	2009	2010	2011	2012	2013	2014	2015	2016
1	MPD Conceptual Design Report								
2	MPD TDR								
3	R&D program								
	TPC								
	TOF								
	ZDC								
	Si inner tracker								
	EMC								
	Straw Tracker								
	DAQ								
4	Production and tests (the 1 st stage dete	ctors)							
	Superconducting Magnet of MPD								
	TPC								
	EMC								
	ZDC								
	TOF barrel								
	Slow Control								
	DAQ								
	Installation& Commissioning								
	Si inner tracker								
5	Production and tests (the 2 nd stage det	ectors)							
	TOF(EndCap)								
	Straw Tracker								♥
	DAQ								
	Slow Control								
	Installation								
6	Production and tests (the 3 rd stage, Fo	prward Spe	ctrometer)	1					
	Toroidal Magnet construction								
	Coordinate detectors production								
	Coordinate detector testing								
	Installation& Commissioning								

Status of MPD project & physics

MPD project (1st stage) was recommended for approval by PAC of PP in January 2010

 White Book
 the last version in August 2010 (>100 authors from>40 centers)


MPD CDR - the first version -June 2009

- the last v.1.2 - August 2010

MPD LoI - the first version in February 2008

Angle coverage of MPD

Particle yields in Au+Au collisions $\sqrt{s_{NN}} = 7.1 \text{ GeV} (10\% \text{ central})$

Luminosity L = 10²⁷cm⁻²s⁻¹ Event rate (central) 7 kHz

35

Particle (mass)	Multi- plicity	decay mode	yield (s⁻¹)	yield 10w
K+ (494)	55		7.7 [.] 10 ³	4.6 [.] 10 ¹⁰
K ⁻ (494)	16		2.2·10 ³	1.3·10 ¹⁰
ρ (770)	23.6	e+e-	1.6 ⁻¹⁰⁻²	9.4 [.] 10 ⁴
ω (782)	14.2	e+e-	1.4 ⁻¹⁰⁻²	8.6 ⁻ 10 ⁴
φ (1020)	2.7	e+e-	1.1.10-2	6.8 ⁻ 10 ⁴
Ē⁻ (1321)	2.4	Лп⁻	67	4.0 ⁻ 10 ⁸
Ω ⁻ (1672)	0.16	٨K⁻	1.5	9.2·10 ⁶
D ⁰ (1864)	7.5 ⁻¹⁰⁻⁴	К+п⁻	2.0.10-4	1200
J/ψ (3097)	3.8·10 ⁻⁵	e+e-	8.0 [.] 10 ⁻⁵	480

Spin Physics

NICA design allows to reach effectively polarized

• protons up to $\sqrt{s} \sim 26$ GeV with average L = 2 10³⁰ cm²/s

• deuterons up to $\sqrt{s} \sim 12$ GeV with the average L= 10²⁹ cm²/s.

The SPD (Spin Physics Detector) program includes:

- Drell-Yan / MMT processes,
- J/ Ψ production processes,
- Spin effects in elastic $p\uparrow p\uparrow$, $p\uparrow d$ & $d\uparrow d\uparrow$ scattering,
- Spin effects in inclusive high-pT reactions,
- Polarization effects in heavy ions collisions

All these give unique possibilities to investigate "spin puzzle" - one of the main tasks of the modern hadron physics

The 1-st stage could be started already at MPD

essential extension of COMPASS (CERN SPS) program

MPD Collaboration

+ Nuclotron-M/NICA/MPD/SPD cooperation

Members of the Collaboration

□Joint Institute/for Nuclear Researdi00

Institute for twclear Bereach, RAS, RF

- Bogolyubov Institute for Theoretical Physics, NAS, Ukraine
- Nuclear Physics Institute of MSU, RF
- Institute Institution Experimental Physics, RF
- St.Petersbult Reate University, RF
- Institute of Appliest Russin Mpleountries
 Institute for Nuclear Research & Nuclear Energy BAS, Sofia, Bulgaria
- Institute for Scintillation Materials, Kharkov, Ukraine
- □ State Enterprise Scientific & Technolog
- Research Institute for Apparatus construction, Kharkov, Ukraine

Particle Physics Offatsona Bolar is in pentation of Engineering Physics, Tsinghua University, Beijing, China

Physics Institute Az.AS, Azerbaidian New participants – are welcome !

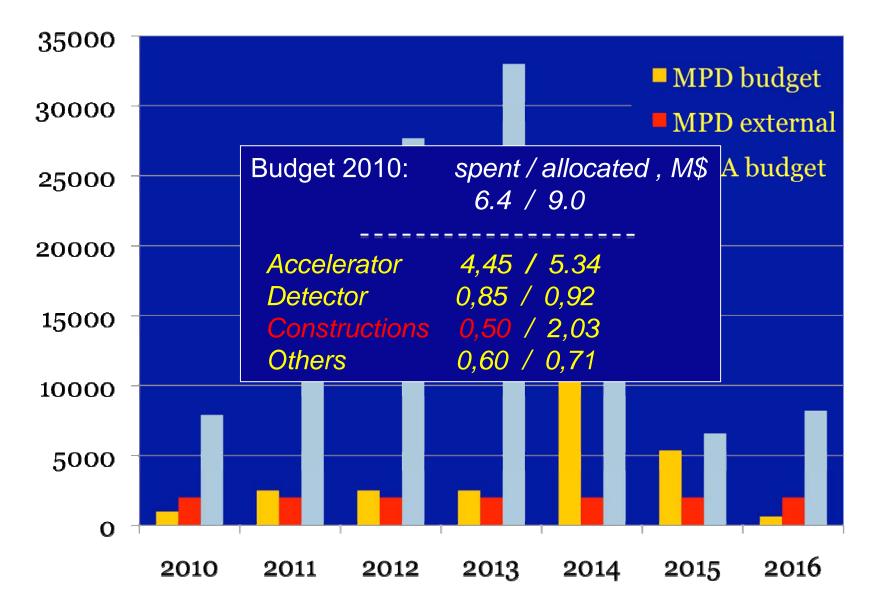
Major milestones for 2011

Iaunch the magnet production line (final assembly, test, QC & certification)

required for **booster**, **collider**, **FAIR** +....

to complete Nuclotron-M & start Nuclotron-Nica project with beams required for both NICA & BMN

to approve project for collider civil engineering & start works on Collider layout design, & construction + infrastructure


to complete design works on MPD solenoid,

& launch a tender for the production

development of fixed target area, & infrastructure upgrade (bld.205)

to start the BMN project

Resources for NICA & MPD, in k\$

Round Table Discussions on NICA@JINR

Round Table Discussion I: Searching for the mixed phase of strongly interacting matter at the JINR Nuclotron, *July 7 - 9, 2005* http://theor.jinr.ru/meetings/2005/roundtable/

Round Table Discussion II: Searching for the mixed phase of strongly interacting matter at the JINR Nuclotron: Nuclotron facility development JINR, Dubna, October 6 - 7, 2006 http://theor.jinr.ru/meetings/2006/roundtable/

Round Table Discussion III: Searching for the mixed phase of strongly interacting QCD matter at the NICA: Physics at NICA JINR (Dubna), November 5 - 6, 2008, http://theor.jinr.ru/meetings/2008/roundtable/

Round Table Discussion IV: Searching for the mixed phase of strongly interacting QCD matter at the NICA: Physics at NICA (White Paper) JINR (Dubna), September 9 - 12, 2009 http://theor.jinr.ru/meetings/2009/roundtable/

Round Table Discussion IV: Searching for the mixed phase of strongly interacting QCD matter at the NICA: Physics at NICA (White Paper) JINR (Dubna), August 28, 2010 http://theor.jinr.ru/~cpod/Dubna_2010_program2.htm

Critical point and onset of deconfinement - CPOD-2010 22-29 August, 2010, Dubna

- very fruitful discussions on the NICA/MPD program have indicated a great interest of the community to this project
- an importance of experiments at Nuclotron was emphasized
- essential contribution to the NICA White Book (114 authors, 19 countr.)

меморандум Совместного семинара ИТЭФ-ОИЯИ Институт теоретической и экспериментальной физики 27 мая 2009 года, г. Москва

Участники семинара заслушали локлалы:

А.Н. Сисакян "Ускорительный комплекс NICA: статус и перспективы". Б.Ю. Шарков "Новые возможности ускорителей для исследования вешества экстремальных условиях".

И.Н. Мешков "Коллайдеры тяжёлых ионов RHIC и NICA: статус и

ний пасшают коллицары нажных понов кино и чести синтен перспективы". В.Д. Тонеев "Физика тяжёлых понов на ускорительном комплексе NICA".

Отмечены:

 актуальность и возрастающая привлекательность исследований тяжелононных столкновений в диапазоне энергий √sNN ~ 4 – 11 ГэВ для фундаментальных проблем поиска новых состояний ядерной материи и изучения процессов экстремально высоких плотностей:

2) прогресс в развитии проекта NICA, получившего широкую международную известность и высокую оценку авторитетных экспертов мирового уровня:

3) заинтересованность специалистов ИТЭФ в активном участии в совместных с ОИЯИ работах по проекту NICA;

4) необхолимость более тесной кооперации в решении проблем. представляющих взаимный интерес, включая организацию ассоциации (консорциума, сообщества) по исследованию экстремальных состояний вещества и фазовых превращений в понных столкновениях.

Соруководители семинара: А.Н.Сисакян академик РАН			В.И.Захаров профессор		
а Участники сем				профессор	
Б.Ю.Шарь	сов И.Н.Мен	шков	4	А.Б.Кайдалов	
член-корреспо	ндент член-коррес	пондент	член-кор	респондент	
PAH	PAH		PAH		
А.С.Сорин	В.Д.Тонеев	А.Д.Ко	валенко	Г.В.Трубников	

ITEP-JINR seminar at ITEP, 27.05.09

горячей и плотной сильновзаимодействующен КХД материи и поиск возможных проявлений образования смешанной фазы и критической точки в столкновениях тяжелых ионов.

MEMORANDUM

Round Table Discussions I, II, III, IV,V... JINR, Dubna, 2005, 2006, 2008, 2009...

Решение ого семинара по релятивнстской ядерной физике

27 марта 2008 года Институт Ядерных Исследований РАН

Участники семинара "Проект NICA (тяжелононный коллайдер: концепция, планы

Участника семинара "Проект NICA (тякелононнай коллайдер: колценции, планые реализация и перепеченные добогу" заклупата доклады, представленные рагработ с и перепечения с положит и получители и получители и получители и 1. А.Н. Сисакия. "Статус проекта NICA/MPD". 2. А.Н. Сисакия. "АС. Сорни "Поограмма физических исследований на ускорительном комплексе NICA". 3. И.Н. Мешков "Концентуальный проект укорительного комплекса NICA". 4. В.Д. Кеккладае "Концентуальный проект многовсявого детектора МРD". с сеготовских заключению по проекта, а также перепективае от осуществлями ранита к следующемы заключению по проекта, а также перепективае от осуществляеми ранитам к следующемы заключению по проекта.

Физическая проблема, илициированшая разработку Проекта, является одной из наиболее важных среди фундаментальных проблем физики микромира и начальных зпалов эко-подни Вселениюй.

Представленные на семинаре концептуальные проекты NICA и MPD выполнены на современном уровне с привлечением передовых технологий и использованием оригинальных вдей, предложенных и развитых в России.

Осуществление Проекта на базе лабораторий ОИЯИ представляется вполне реальным, а представленные планы работ - выполнимыми.

Для успешного и быстрого выполнения Проекта целесообразно создание широкой Всероссийской и международной коллаборации.

5. Институты России располагают необходимым научным и инженерно-

Уследная реализация Проекта позволит всем участникам Проекта занять лидирующие позиция в физике высоких энергий и войти в число самых передовых исследовательских

Б.Ю.Шарко Директор ИТЭФ чл.-корр. РАН

1) lee tut	tota -
А.Матвеев	А.Н.Тавхелидзе
пректор ИЯИ РАН	академик РАН
адемик РАН	
Autal	RySaug
Н.Лебедей	B.A.Pydakou
корр. РАН	AKETEMUK PAH

A

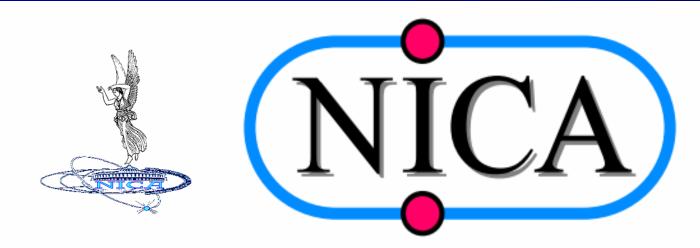
All Moscow-JINR seminar at INR, 27.03.08

Round Table Discussion V Searching for the mixed phase of strongly interacting QCD matter at the NICA: Physics at NICA JINR (Dubna), August 28, 2010 http://theor.jinr.ru/~cpod/program.html

TOPICS:

I: Fixed target experiments at Nuclotron-N

II: Status and progress of the NICA White Paper


NICA White Paper

SEARCHING for a QCD MIXED PHASE at the NUCLOTRON-BASED ION COLLIDER FACILITY

The final goal of the NICA White Paper is to address the following key topics:

- Phases of dense QCD matter and conditions for their possible realization
- Characteristic processes as indicators of phase transformations
- Estimates of various observables for events
- Comparison to other experiments

http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

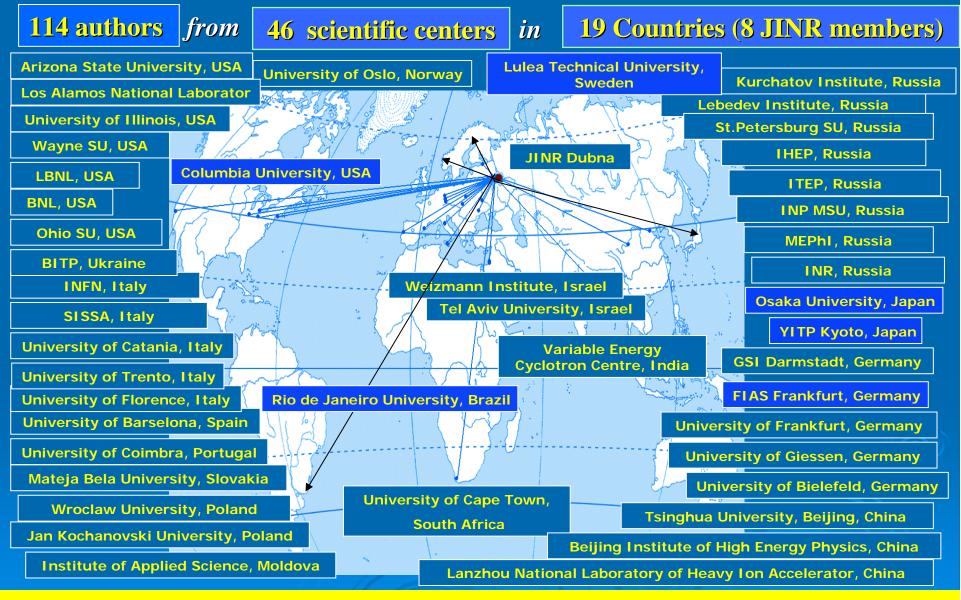
Draft v 3.01 June 17, 2010

SEARCHING for a QCD MIXED PHASE at the NUCLOTRON-BASED ION COLLIDER FACILITY (NICA White Paper)

http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

Editorial board: D. Blaschke D. Kharzeev A. Sissakian A. Sorin O. Teryaev V. Toneev I. Tserruya

Contents


1 General aspects 1.1 MPD at the JINR NICA in the landscape of h 1.2 Comments on the Mixed Phase Physics (MPP Nu Xu 1.3 Experimental advantages of collider over fixed 1.4 Observables and open problems for NICA E. Bratkovskaya^a and W. Cassing^b 1.5 Exploring high-density baryonic matter: Maxin 1.6 Nuclear matter physics at NICA * 2 Phases of QCD matter at high baryon densit 2.1 Comments on a phase diagram and fluctuation 2.2 Search for manifestation of medium effects in c matter 2.3 Searching for evidence of spinodal decompositi 2.4 Supercooled quark-gluon phase? Yu. Ivanov..... 2.5 Hadronic signals of non-equilibrium phase tran 2.6 Rigorous investigation of surface tension and fi at NICA energies 2.7 Isospin effects on phase transitions of hadronic M. Di Toro^{a,b}, V. Greco^{a,b}, B. Liu^{c,d}, and S. P. 2.8 Scalar mesons properties at finite temperature : P. Costa^a and Yu.L. Kalinovsky^b 2.9 Hadron abundances at high baryon density 2.10 Accessibility of dense QCD phases in heavy-ior D. Blaschke^{a,b}, F. Sandin^{e,d}, V. Skokov^{b,e,f} and 2.11 Directed flow as a signal of a liquid state of tra 2.12 Transitional change to baryon-rich QCD matt Kenji Fukushima

2.13	3 Importance of third moments of conserved charges in relati collisions	vistio	: heav	vy io
2.14	$\begin{array}{llllllllllllllllllllllllllllllllllll$	5		ctro
2.15	5 Statistical hadronization phenomenology in a low-energy		5.1	Lo L
2.16	Giorgio Torrier ^{a,b} 5 Flow scaling in a low energy collider: When does the perf Giorgio Torrier ^{a,b}		5.2	Di K.
E			5.3	Ele Kh
Fen 3.1	ntoscopy, correlations and fluctuations Femtoscopic search for the 1-st order phase transiti <i>R. Lednicky</i>		5.4	Sol A.
3.2	Brief arguments for studying azimuthally sensitive HBT M. Lisa		5.5	Lo H.
3.3	V. Okorokov		5.6	$\frac{J/i}{P}$
3.4	Event-by-event fluctuations in nucleus-nucleus collision	6	Loc	al 7
3.5	M. Gorenstein . Flow and freeze-out in relativistic heavy-ion collisions at		6.1	Te D.
3.6	L. Bravina and E. Zabrodin		6.2	Ма Р. М.
3.7	girev . Fluctuations and non-equilibrium processes in collective Takeshi Kodama .		6.3	On V.
	Takeshi Kodama		6.4	Ric
Me 4.1	chanisms of multi-particle production My several thoughts on NICA E. Levin		6.5	S. Sp A.
4.2	Some issues in NICA-related research at LPI	7	C	mula
4.3	I. Dremin and A. Leonidov	'	7.1	Ne A.
4.4	interacting matter formed at the NICA and FAIR energi Yu. Singukov		7.2	Th A. M.
4.5	Chemical freeze-out and strangeness production study at	8	Dol	ariz
4.6	F. Becattini	9	8.1	Po A.
4.7	Marcus Bleicher ^{a,b} , Jan Steinheimer ^{a,b} Chiral vortaic effect and neutron asymmetries at NICA		8.2	Spi A.
	Oleg Rogachevsky ^{a,b} , Alexander Sorin ^{a,c} and Oleg Teryae		8.3	Pol V.
		9	Rel	ated

	00	
Elec 5.1	tromagnetic probes and chiral symmetry in dense QCD matter 1: Low-mass dileptons at NICA	11
	I. Tserruya	11
5.2	Dileptons at NICA	**
_	K. Gudima ^a and V. Toneev ^b	13
5.3	Electromagnetic probes on NICA	
	Kh. Abraamyan and A. Friesen	14
5.4	Solving the problem of anomalous J/ψ suppression at NICA MPD	
	A.B.Kurepin and N.S.Topilskaya	16
5.5	Low energy J/ψ -hadron interactions	
	H. Satz	17
5.6	J/ψ production in high energy nuclear collisions	
	P. Zhuang	18
	al P and CP violation in hot QCD matter 12	26
5.1	Topologically induced local \mathcal{P} and \mathcal{CP} violation in hot QCD matter	20
	D. Kharzeev	26
5.2	Magnetic effects in QCD vacuum: lattice view	
	P.V. Buividovich ^{a,b} , M.N. Chernodub ^b , E.V. Luschevskaya ^b and	
	M.I. Polikarpov ^e	27
6.3	On CP violation in heavy-ion collisions at the NICA energy	
	V. Skokov and V. Toneev	28
3.4	Rich physics of non-central heavy-ion collisions	
	S. Voloshin	30
3.5	Spontaneous P -violation in dense matter accessible with NICA	
	A. Andrianov ^a , V. Andrianov ^a and D. Espriu ^b	31
Cun	nulative processes 1:	35
7.1	New forms of QCD matter and cumulative processes	
	A. Kaidalov	35
7.2	The study of dense cold nuclear matter with cumulative trigger	
	A. Stavinskiy, O. Denisovskaya, Yu. Zaitsev, K. Mikhailov, P. Polozov,	
	M. Prokudin, V. Stolin, R. Tolochek, S. Tolstoukhov and G. Sharkov 1	36
Dele	visition effects and only physical 10	38
-01a 3.1	rization effects and spin physics 13 Polarization effects in heavy ions collisions at NICA	30
	A. Efremov, O. Teryaev and V. Toneev	38
3.2	Spin physics	~ _
	A. Efremov, A. Nagaytsev, I. Savin, O. Shevchenko and O. Teryaev 1	40
3.3	Polarization of Λ^0 hyperons in nucleus-nucleus collisions at MPD	
	V. Ladygin, A. Jerusalimov and N. Ladygina	43
Rela	ated topics 14	44
	0.1. Determination of the constitution of state of dense matters	

10	Refe	erences	150
		sible applications for nanofabrication and in medicine D.E. Donets, E.D. Donets, E.E. Donets, V.V. Salnikov V.B. Shutov	148
k	9.3	Development of highly charged ion sources for NICA injector and its pos-	
		A. Kovalenko, A. Sissakian and A. Sorin	146
		possibilities at NICA facility	
	9.2	Relativistic nuclear fusion reactions and QED of strong fields: noval	
		S. Fantoni ^a , S. Gandolf ^b , A. Illarionov ^e , F. Pederivax ^d and K. Schmidt ^e	144
	9.1	Determination of the equation of state of dense matter	

The NICA White Paper

http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

List of authors (114)

Kh.Abraamyan, A.Andrianov, V.Andrianov, M.Asakawa, F.Becattini, M.Bleicher, E.Bratkovskaya, L.Bravina, K.Bugaev, P.Buividovich, W.Cassing, M.Chernodub, J.Cleymans, P.Costa, O.Denisovskaya, D.E.Donets, E.D.Donets, E.E.Donets, M. DiToro, I.Dremin, A.Efremov, D.Espriu, S.Fantoni, A.Friesen, K.Fukushima, S.Gandolfi, M.Gazdzicki, M.Gorenstein, V.Greco, K.Gudima, A. Illarionov, Yu.Ivanov, A.Jerusalimov A.Kaidalov, Yu.Kalinovsky, D.Kharzeev, T.Kodama, E.Kolomeitsev, V. Korotkikh, A.Kovalenko, A.B.Kurepin, V.Ladygin, N.Ladygina, R.Lednicky, A.Leonidov, E.Levin, M.Lisa, I. Lokhtin, B.Liu, G.Lykasov, E.Luschevskaya, L.Malinina, K.Mikhailov, B.Mohanty, A.Nagaytsev, V.Okorokov, F.Pederiva, S. Petrushanko, S.Plumari, M.Polikarpov, P.Polozov, M.Prokudin, J.Randrup, O.Rogachevsky, V.Salnikov, L.Sarycheva, H.Satz, I.Savin, P.Senger, G.Sharkov, O.Shevchenko, V.Shutov, K.Schmidt, Yu.Sinyukov, A.Sissakian, V.Skokov, A.Snigirev, A.Sorin, A.Stavinskiy, J.Šteinheimer, M.Stephanov, V.Stolin, O.Teryaev, R.Tolochek, S.Tolstoukhov, B.Tomasik, V.Toneev, N.Topilskaya, G.Torrieri, S.Troshin, I.Tserruya, S.Typel, S.Voloshin, D.Voskresensky, N.Xu, Yu.Zaitsev, E.Zabrodin, P.Zhuang, ...

Almost all experts in the field of heavy ion collisions have contributed to the NICA White Paper

Contents

(55 contributions = 44 + 11, additional 25%)

- 1 General aspects (5 + 1)
- 2 Phases of QCD matter at high baryon density (10 + 6)
- **3** Femtoscopy, correlations and fluctuations (6 + 1)
- **4** Mechanisms of multi-particle production (5 + 1)
- **5** Electromagnetic probes and chiral symmetry in dense QCD matter (6)
- 6 Local P and CP violation in hot QCD matter (5 + 1)
- 7 Cumulative processes (2)
- **8** Polarization effects and spin physics (3)
- 9 Related topics (2 + 1)

10 References

New Contributions to the NICA White Paper Draft v 3.03 (last update: June 20, 2010)

http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

- 1) Peter Senger (GSI): Nuclear matter physics at NICA
- 2) S.M. Troshin (Protvino): Directed flow as signal of liquid state of transient matter
- 3) Kenji Fukushima (YITP Kyoto): Transitional change to baryon-rich QCD matter at NICA energy
- 4) Masayuki Asakawa (U Osaka): Importance of third moments of conserved charges
- 5) Yuri Ivanov (Kurchatov I Moscow and GSI): Baryon stopping in Heavy-Ion Collisions at E=2...160 GeV/nucleon
- 6) Giorgio Torrieri (FIAS & Columbia U): Statistical hadronization phenomenology in a low-energy collider
- 7) Giorgio Torrieri (FIAS & Columbia U): Flow scaling in a low-energy collider: when does the perfect fluid turn on?
- 8) Takeshi Kodama (U Rio de Janeiro): Fluctuations and non-equilibrium processes in collective flow
- Marcus Bleicher & Jan Steinheimer (FIAS): MEMO production at high baryon densities
- 10) Oleg Rogachevsky, A.S. & Oleg Teryaev (JINR): Chiral vortaic effect and neutron asymmetries at NICA
- 11) D.E. Donets et al. (JINR): Development of highly charged ion sources for NICA injector and its possible application for nanofabrication and in medicine

New contributions in preparation:

1. L. McLerran (BNL), K. Redlich (U Wroclaw), et al. "Triple point and quarkyonic phase in the QCD phase diagram"

2. L.Turko (Wroclaw University, Poland), "TBA"

3. F.Karsch and Ch.Schmidt (BNL, Uni. Bielefeld, GSI Darmstadt) "Lattice results on QCD at finite temperature and baryon density"

4. Joerg Aichelin (Universit'e de Nantes), "TBA"

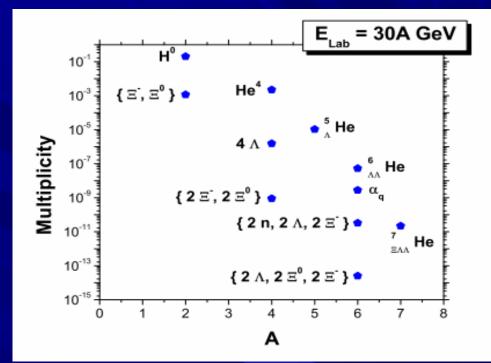
5. Hans Georg Ritter (BNL), "TBA"

Nuclear matter physics at NICA Peter Senger

Helmholtzzentrum Heavy Ion Research, GSI Darmstadt, Germany

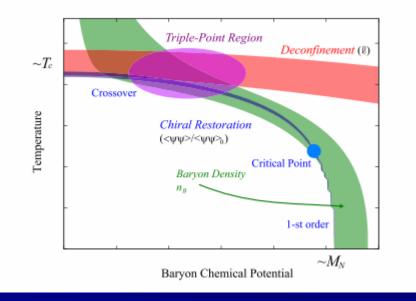
Physics case	Observables	Detectors
nuclear EOS at high densi- ties	proton flow, Λ, Ξ, Ω	Silicon tracker, TPC, TOF
	excit. funct. of yield and flow of K, Λ , Ξ , Ω . e-by-e fluctuations	Silicon tracker, TPC, TOF
strange matter	multi-strange short-lived objects (decay into Λ , Ξ , Ω)	Silicon tracker, TPC, TOF
chiral phase transition, hadrons in dense matter	dileptons (e+e-)	HBD, RICH, TPC, TOF, ECAL, (TRD ?)

 Most interesting scientific questions with a basic version of the MPD: magnet, TPC, Silicon tracker and TOF detector; upgrade: electron detectors


- NICA/MPD part of worldwide program exploring the QCD phase diagram at high densities: AGS, SPS, NA61/SHINE, GSI/SIS18 --> RHIC, FAIR, NICA
- Problem for STAR @ RHIC: low luminosity, limited beamtime
- Virtues of NICA:
 - high luminosity at high baryon density-->multidifferential observables

- collider exp. with uniform acceptance, almost independent of energy

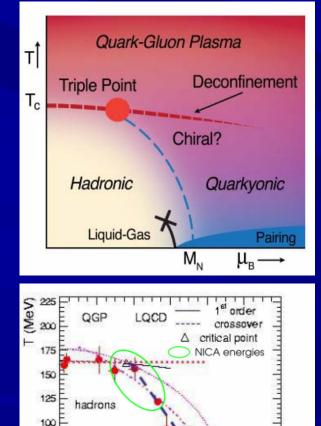
- MPD @ NICA and CBM @ FAIR: complementary measurements, joint R&D


MEMO production at high baryon densities Marcus Bleicher & Jan Steinheimer FIAS & J.W.Goethe University Frankfurt (Main), Germany

Cluster	${\rm Mass}~[{\rm GeV}]$	Quark content
He^4	3.750	12q
H^0	2.020	4q + 2s
α_q	6.060	12q + 6s
$\{\Xi^-,\Xi^0\}$	2.634	2q + 4s
$\{4\Lambda\}$	4.464	8q + 4s
$\{2\Xi^-, 2\Xi^0\}$	5.268	4q + 8s
$^{5}_{\Lambda}He$	4.866	14q + 1s
$^{6}_{\Lambda\Lambda}He$	5.982	16q + 2s
$\frac{7}{\Xi^0\Lambda\Lambda}He$	7.297	16q + 2s
$\{2n,2\Lambda,2\Xi^-\}$	6.742	12q + 6s
$\{2\Lambda,2\Xi^0,2\Xi^-\}$	7.500	8q + 10s
$\{d,\Xi^-,\Xi^0\}$	4.508	8q + 4s
$\{2\Lambda, 2\Xi^{-}\}$	4.866	6q + 6s
$\{2\Lambda, 2\Sigma^{-}\}$	4.610	8q + 4s

- Production of multi-strange metastable objects (MEMOs) explored in Pb+Pb reactions at 30 AGeV within coupled transport-hydrodynamics model
- Predictions for yields & particle-dependent rapidity and momentum distributions
- Excitation functions show clear maximum in the energy range of NICA and FAIR which are therefore the ideal place to study the production of these MEMOs

Transitional change to baryon-rich QCD matter at NICA energy Kenji Fukushima Yukawa Institute for Theoretical Physics, Kyoto University, Japan



See also arxiv:1006.2596

"Phase diagram of hot and dense QCD constrained by the statistical model"

(Polyakov-loop NJL model)

"... the collision energy \sqrt{s} NN ≈ 8 GeV is a threshold below which abundant baryons can emerge. Such baryon dominant matter yet below deconfinement could be identified with so-called **Quarkyonic Matter**. NICA would be an ideal facility to probe such an onset to enter the baryon-rich regime of QCD matter." Triple point and quarkyonic matter in the QCD phase diagram Larry McLerran, Krzysztof Redlich and David Blaschke, BNL Upton, USA; U Wroclaw, Poland; JINR Dubna, Russias

75

Data (fits)

=0.12 fm

E=500 MeV/fm

800

1000

μ_b (MeV)

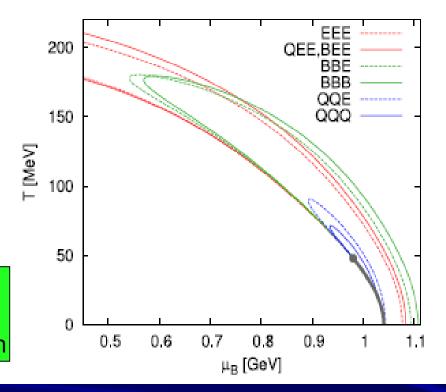
1200

hadron das

Based on A. Andronic et al. Nucl. Phys. A 837. 65 (2010) [arxiv:0911.4806]

The NICA (and CBM) energy range (green ellipse) covers chemical freeze-out parameters in the QCD phase diagram from the fit of hadron production with the statistical model which lie in the transition from meson-dominated to baryon-dominated freeze-out.

Here we expect the suggested transition from a hadronization out of the Quark-Gluon Plasma to a hadronization out of the "Quarkyonic Phase", i.e., where three phases meet in a "Triple Point": QGP, Hadronic and Quarkyonic Phase!

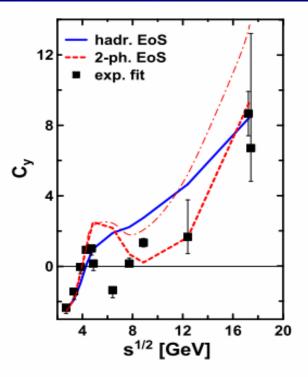

Importance of third moments of conserved charges in HICs Masayuki Asakawa Osaka University, Japan

Third moments of conserved charges (derivatives of susceptibilities)

$$m_3(ccc) \equiv \frac{\langle (\delta N_c)^3 \rangle}{VT^2}, \quad m_3(\text{EEE}) \equiv \frac{\langle (\delta E)^3 \rangle}{VT^5}$$

where Nc with c=B,Q are net baryon and electric charge numbers in a volume V. E denotes the total energy, dNc=Nc- <Nc>, dE=E - <E>. Mixed moments accordingly.

Regions where third moments take negative values in the T- mu_B plane are strongly correlated with the suspected phase transition

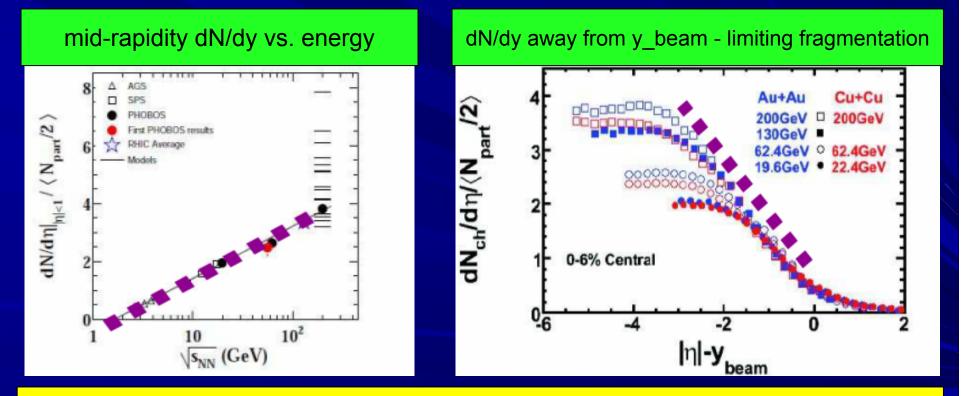

Establishing negativeness of third moments in experiment is evidence for: (1) existence of peak structure of susceptibilities in the QCD phase diagram (2) realization of hot matter beyond the peak, i.e. the QGP, in heavy-ion collisions

Baryon stopping in heavy-ion collisions at E=2-160 GeV/nucl. Yuri B. Ivanov <u>Kurchatov Institute Moscow, Russia & GSI Darmstadt, Germany</u>

Irregularity in the energy dependence of the curvature Cy of the proton spectrum as a function of the (dimensionless) rapidity (y-y_cm)/y_cm

$$C_y \equiv \left(y_{cm}^3 \frac{d^3N}{dy^3}\right)_{y=y_{cm}} / \left(y_{cm} \frac{dN}{dy}\right)_{y=y_{cm}}$$
$$= \left(y_{cm}/w_s\right)^2 \left(\sinh^2 y_s - w_s \cosh y_s\right).$$

The "wiggle" in Cy(s) is the characteristics of a first order phase transition in the EoS



- The "wiggle" in energy dependence of the curvature Cy of the proton spectrum occurs between AGS and low SPS energies
- It is characetristic for a 1st order phase transition ("mixed phase") behaviour !
- NICA @ JINR and CBM @ FAIR will cover the relevant energies to confirm or reject this observed trend in the experimental data

Flow scaling in a low-energy collider: When does the perfect fluid turn on? Giorgio Torreri

FIAS and University Frankfurt, Germany; Columbia Univ., USA

RHIC found remarkable scaling laws indicating "perfect fluid" - minimal viscosity!

Establish a lower limit for the onset of the hydro scaling in HIC experiments!
 Collider for scanning energy and rapidity below RHIC energies: NICA optimal!

Chiral vortaic effect and neutron asymmetries at NICA Oleg Rogachevsky, Alexander Sorin and Oleg Teryaev JINR Dubna, Russia

Both, chiral magnetic effect (CME) and chiral vortaic effect (CVE) belong to the class of effects based on the triangle anomaly in QFT. CVE is a generalization to conserved charges other than the electric one. In case of baryon charge and chemical potential, it should manifest itself by neutron asymmetries, observable at NICA/MPD!

θ	$e_j A_\alpha J^\alpha \Rightarrow \mu_j V_\alpha J^\alpha$	$J_e^{\gamma} = \frac{N_e}{4\pi^2 J}$	$\frac{V_c}{N_f} \varepsilon^{\gamma\beta\alpha\rho} \partial_\alpha V_\rho \partial_\beta (\theta \sum_j e_j \mu_j)$	
g_{i}	$e_j \vec{H} \to \mu_j \vec{\nabla} imes \vec{V}$	$J_i^{\nu} = \frac{\sum_j g_{i(j)}}{\sum_j e_{j}}$	$\frac{g_{j}\mu_{j}}{g_{i}\mu_{j}} J_{e}^{\nu} J_{i}^{0} = \frac{ \vec{\nabla}\sum_{j} g_{i(j)}\mu_{j} }{ \vec{\nabla}\sum_{j} e_{j}\mu_{j} }$	J_e^0
Observable: three-particle c	correlator: $\langle cos(\phi_{\alpha} + \phi_{\alpha}) \rangle$	err	40 = 40 $40 = 40$ $35 = 40$ $40 = 9 GeV$	7
In CME case at RHIC: 15 M events were sufficient to establish the effect For demonstrating the CVE, we need 1000 M			UrQMD 10 ⁹ events UrQMD 10 ⁹ events 25 20 15	
events, which can be within a few months	e collected at NICA		10 5 0 0 10 20 30 40 50 60 70 80 most central (%)	

Development of highly charged ion sources for NICA injector & possible applications for nanofabrication and in medicine
D.E. Donets, E.D. Donets, E.E. Donets, V. Salnikov, V. Shutov
Kurchatov Institute Moscow, Russia & GSI Darmstadt, Germany

Novel type of highly charged ions sources – Electron String Ion Sources (ESIS) is under development in JINR in framework of NICA project. This ion sources produce intense beams of highly charged ions of heavy elements, up to gold. Two major applications of this ion sources: for nanofabrication and for cancer therapy are briefly discussed.

1 Production of nanostructures by slow highly charged ions for information storage and processing at nanometer range

2 Resonant combination cancer therapy – newly proposed method with use of highly charged ion source of highest intensity

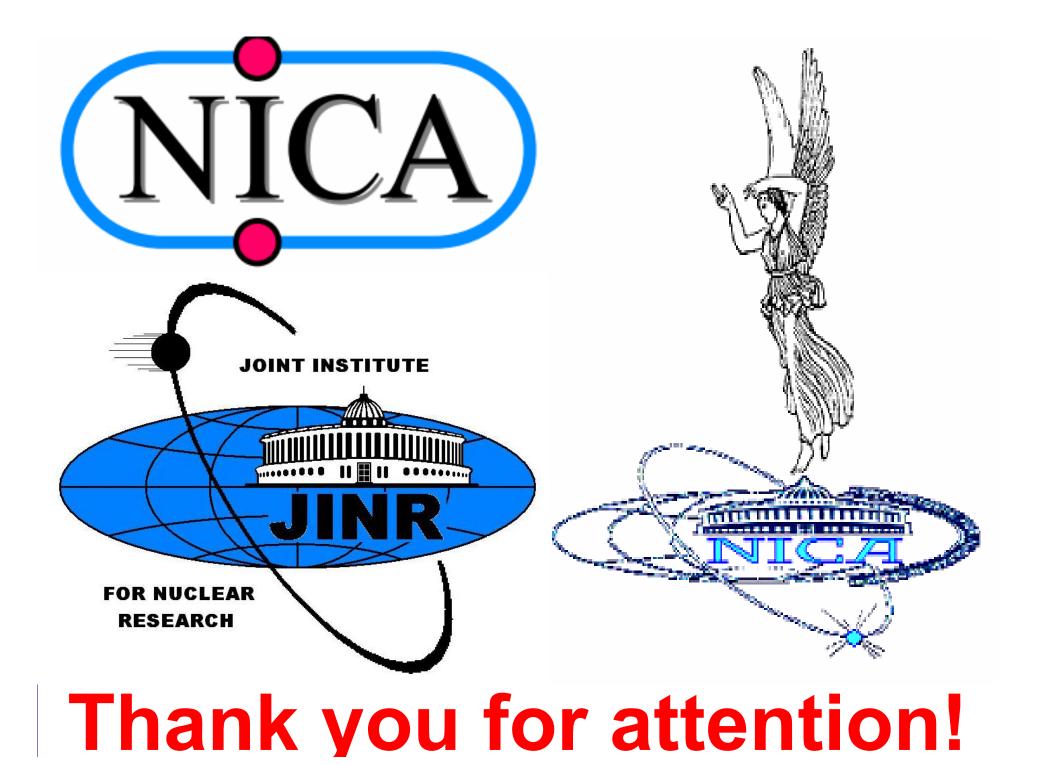
Basic and applied researches with highly charged intense ion beams of heavy elements, produced with ESIS-type ion sources have a very wide area for applications in nanosceiences and medicine. Ion source development program in framework of the NICA project has a great potential for various nonaccelerator applications as well.

Summary

The NICA design passed the phase of concept

formulation and is presently under

- ✓ detailed simulation of accelerator elements parameters,
- ✓ development of working project,
- ✓ manufacturing and construction of prototypes,
- ✓ preparation of the project for state expertise in accordance with regulations of Russian Federation.


The project realization plan foresees a staged construction and commissioning of accelerators forming the facility. The main goal is the facility commissioning in 2016.

Summary

NICA/MPD project to study hot & dense baryonic matter is progressing well

□ The accelerator part is properly *supervised*

- The 1st stage of MPD conception is completed,
 & the project is recommended for realization
- The scientific program in BM will be extended for low energy region – BMN
- External collaborations are invited to present proposals
- □ Project schedule & financing *are fulfilling*
- The Collaboration around NICA/MPD is growing New members are welcome !

