The pion-photon transition form factor in QCD: Facts and fancy

P. Kroll

Fachbereich Physik, Univ. Wuppertal and Univ. Regensburg Dubna, September 2010

Outline:

- The $\pi\gamma$ trans. form factor in coll. factorization
- The new BaBar data
- Ways out
- The mod. pert. approach
- Generalization to η, η', η_c
- Summary

based on ongoing work in collaboration with V. Braun and M. Diehl

Measuring the $\pi\gamma$ form factor

space-like

time-like

 $\gamma^* \gamma \pi$ vertex: $\Gamma_{\mu\nu} = -ie^2 F_{\pi\gamma^*}(Q^2) \epsilon_{\mu\nu\alpha\beta} q^{\alpha} q'^{\beta}$

data from: TPC/2 γ (90), CELLO(91) CLEO(95,98) $Q^2 \lesssim 8 \,\text{GeV}^2$ BaBar(09) $4 \lesssim Q^2 \lesssim 38 \,\text{GeV}^2$ also data on $\eta\gamma$, $\eta'\gamma$, $\eta_c\gamma$ L3(97), CLEO(95,98), BaBar(10)

BaBar(06) $\eta\gamma$ and $\eta'\gamma$ at $s = 112 \,\mathrm{GeV}^2$

two-photon decay width of the mesons: normalization of FF at $Q^2 = 0$

Theory: collinear factorization

 f_{π} pion decay constant; μ_F, μ_R, μ_0 factorization, renormalization, initial scale a_n embody soft physics convenient choice: $\mu_F = \mu_R = Q$ \overline{MS} scheme γ_n anomalous dimensions (pos. fractional numbers, growing with n) LO: Brodsky-Lepage (80) NLO: del Aguila-Chase (81); Braaten (83) Kadantseva et al(86)

LO:
$$Q^2 F_{\pi\gamma} = \frac{\sqrt{2}f_{\pi}}{3} \langle 1/x \rangle \qquad \langle 1/x \rangle = 3 \Big[1 + \sum a_n(\mu_F) \Big]$$

due to evolution relative weights of the a_n vary with $\ln Q^2$

for
$$\ln Q^2 \to \infty$$
 $\Phi_{\pi} \to 6x(1-x) = \Phi_{\rm AS}$ $Q^2 F_{\pi\gamma} \to \sqrt{2} f_{\pi\gamma}$

Two virtual photons

 $\overline{Q}^2 = \frac{1}{2}(Q^2 + Q'^2)$; $\omega = \frac{Q^2 - Q'^2}{Q^2 + Q'^2}$

$$F_{\pi\gamma^*}(\overline{Q}^2,\omega) = \frac{\sqrt{2}f_{\pi}}{3\,\overline{Q}^2} \,\int_0^1 dx \,\frac{\Phi_{\pi}(x,\mu_F)}{1-(2x-1)^2\omega^2} \,\left[1+\frac{\alpha_s(\mu_R)}{\pi}\,\mathcal{K}(\omega,x)\right]$$

for
$$\omega \to 0$$
: $\overline{Q}^2 F_{\pi\gamma^*} = \frac{\sqrt{2}f_\pi}{3} \left[1 - \frac{\alpha_s}{\pi} \right] + \mathcal{O}(\omega^2)$

 $\omega \rightarrow 0$ limitCornwall(66) a_n contribute to order ω^n Diehl-K-Vogt(01) α_s correctionsdel Aguila-Chase (81) α_s^2 correctionsMelic-Müller-Passek (03)

parameter-free QCD prediction (not end-point sens., power corr. small) theor. status comparable with $R = \sigma(e^+e^- \rightarrow \text{hadrons})/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$, Bjorken sum rule, Ellis-Jaffe sum rule, ... but no data

Situation before the advent of the BaBar data

 $Q^2 F_{\pi\gamma}$

 $Q'^{2} = 0$

close to NLO result evaluated from asymptotic distribution amplitude

remaining $\simeq 10\%$ can be explained easily but differently:

non-asymptotic DA, low renormalization scale, twist-4 effects, quark transverse momenta, ...

K-Raulfs (95), Ong (96), Musatov-Radyushkin (97), Brodsky-Pang-Robertson (98), Yakovlev-Schmedding (00), Diehl-K-Vogt (01), Bakulev et al (03), ...

The new situation

we have to worry:

a substantial increase of FF is difficult to accomodate in fixed order pQCD corr. due to a_n (> 0) only shift NLO pred. upwards, don't change shape

(except unplausible solutions like $a_2 \simeq 4$, $a_4 \simeq -3.5$ in conflict with lattice QCD: $a_2(1 \text{ GeV}) = 0.252 \pm 0.143$ Braun et al (06))

Ways out

flat DA $\Phi \equiv 1$: Polyakov(09) $Q^2 F_{\pi\gamma} \sim \int_0^1 dx \left[x + M^2/Q^2 \right]^{-1} = \ln \left[Q^2/M^2 + 1 \right]$ Radyushkin(09) with Gaussian w.f. $\sim k_\perp^2/x(1-x)$

$$Q^2 F_{\pi\gamma} \sim \int_0^1 \frac{dx}{x} \left\{ 1 - \exp\left[-\frac{xQ^2}{2(1-x)\sigma}\right] \right\} \to \ln\left[Q^2/2\sigma\right]$$

broad DA also found from AdS/QCD $\sim \sqrt{x(1-x)}$ Brodsky-de Teramond(06) but not by Mikhailov et al (10) QCD sum rules

Dorokhov(10) non-pert. effects (chiral quarks, instantons) $\rightarrow \ln \left[Q^2/M_q^2\right]$

dispersion (LCSR) approach: Khodjamirian(09) corrections due to long-distance, hadron-like component of photon

quark-transverse momenta and resummation of Sudakov-like effects: Braun-Diehl-K, Li-Mishima(09)

The modified perturbative approach

LO pQCD + quark transv. momenta + Sudakov suppr. Sterman et al (89,92) \implies coll. fact. a. for $Q^2 \rightarrow \infty$ (k_{\perp} fact. based on work by Collins-Soper) Sudakov factor: higher order pQCD in NLL, resummed to all orders

$$S \propto \ln \frac{\ln \left(xQ/\sqrt{2}\Lambda_{QCD} \right)}{\ln \left(1/b\Lambda_{QCD} \right)} + \text{NLL} + \text{RG}(\mu_F, \mu_R) \Longrightarrow e^{-S} \quad \begin{array}{l} \text{exponentiation in } b \text{ space} \\ \left(q - \bar{q} \text{ separation} \right) \end{array}$$

with
$$e^{-S} = 0$$
 for $b > 1/\Lambda_{QCD}$

$$\hat{\Psi}_{\pi}(x, b, \mu_{F}) = 2\pi \frac{f_{\pi}}{\sqrt{6}} \Phi_{\pi}(x, \mu_{F}) \exp\left[-\frac{x(1-x)b^{2}}{4\sigma_{\pi}^{2}}\right]$$
factorization scale $\mu_{F} = 1/b$
b plays role of IR cut-off:
interface between soft gluons (in wave fct)
and (semi-)hard gluons in Sudakov f. and T_{H}

$$F_{\pi\gamma} = \int_0^1 dx \int_0^{1/\Lambda_{QCD}} db^2 \,\hat{\Psi}_{\pi} \,\left[\frac{2}{\sqrt{3\pi}} K_0(\sqrt{x}Qb)\right] e^{-S}$$

A remarkable property

with the Gegenbauer expansion

$$Q^{2}F_{\pi\gamma} = \sqrt{2}f_{\pi}\mathcal{C}_{0}(Q^{2},\mu_{0},\sigma_{\pi}) \left[1 + \sum_{n=2,4,\cdots} a_{n}(\mu_{0})\mathcal{C}_{n}/\mathcal{C}_{0}\right]$$

only lowest few Gegenbauer terms influence results on $F_{\pi\gamma}$ Φ_{AS} suffices for low Q^2 (see fit to CLEO data)

Nature of corrections in m.p.a.

can be understood by replacing e^{-S} by $\Theta(1/\Lambda_{\rm QCD} - b)$ and wave fct $\propto \delta(k_{\perp}^2)$:

$$\int_{0}^{\Lambda_{\rm QCD}^{-1}} b db K_0(\sqrt{x}Qb) = \frac{1}{xQ^2} \left[1 - \frac{\sqrt{x}Q}{\Lambda_{\rm QCD}} K_1\left(\frac{\sqrt{x}Q}{\Lambda_{\rm QCD}}\right) \right] \quad \begin{array}{l} \text{(coll. fact: suppression of} \\ \text{large } b \text{ only by pert. prop.)} \\ \sqrt{x}Q \gg \Lambda_{\rm QCD} \colon K_1 \text{ term exponentially suppressed} \\ \sqrt{x}Q \sim \Lambda_{\rm QCD} \colon K_1 \text{ term of } \mathcal{O}(1) \\ \text{multiplication with distr. ampl. and integration over } x \\ F_{\pi\gamma} \sim 1 + a_2 + a_4 + \ldots - 8 \frac{\Lambda_{\rm QCD}^2}{Q^2} (1 + 6a_2 + 15a_4 + \ldots) + \mathcal{O}\left(\frac{\Lambda_{\rm QCD}^4}{Q^4}\right) \end{array}$$

Sudakov factor provides series of power suppressed terms which come from region of soft quark momenta $(x, 1 - x \rightarrow 0)$ and grow with Gegenbauer index n

intrinsic transverse momentum: power suppressed terms from all x which do not grow with n

Fit to BaBar data

present data allow to fix only one Gegenbauer coefficient Braun-Diehl-K. fit to CLEO and Babar data (initial scale 1 GeV): $a_2 = 0.25$ (fixed from lattice Braun(06)) $a_4 = 0.07 \pm 0.10$ $\sigma = 0.42 \pm 0.07 \text{ GeV}^{-1}$ (trans. size parameter) dashed line: Φ_{AS} K.-Raulfs(95)

Extension to $\eta\gamma$ and $\eta'\gamma$

$$\begin{split} P &= \eta, \eta': \qquad F_{P\gamma} = F_{P\gamma}^8 + F_{P\gamma}^1 \\ F_{P\gamma}^i \text{ as } F_{\pi\gamma} \text{ except of diff. wave fct. and charge factors} \\ \text{octet-singlet basis favored because of evolution behavior:} \\ \text{flavor-octet part as for pion} \\ \text{flavor-singlet part: due to mixing with the two-gluon Fock component} \\ \text{if intrinsic glue is small } a_n^g(\mu_0) \simeq 0: \text{ evolution with } \gamma_n^{(+)} \simeq \gamma_n \\ \text{to NLO: also direct contribution from gg Fock state} \quad (\text{K-Passek(03)}) \end{split}$$

quark-flavor mixing scheme (Feldmann-K-Stech (98))

$$Q^{2}F_{\eta\gamma} = \cos\theta_{8}F^{8} - \sin\theta_{1}F^{1} \implies \frac{2}{3}f_{8}$$

$$Q^{2}F_{\eta'\gamma} = \sin\theta_{8}F^{8} + \cos\theta_{1}F^{1} \implies \frac{4}{\sqrt{3}}f_{1}$$

$$f_{8} = 1.26f_{\pi} \quad f_{1} = 1.17f_{\pi} \quad \theta_{8} = -21.2^{\circ} \quad \theta_{1} = -9.2^{\circ}$$

Results for $\eta\gamma$ and $\eta'\gamma$

preliminary BaBar data; ICHEP 2010, Paris

dashed: Φ_{AS} Feldmann-K.(97) dotted: asymptotic behavior solid: $\sigma_8 = \sigma_1 = 0.76 \pm 0.06 \,\text{GeV}^{-1}$ $a_2^8(\mu_0) = -0.10 \pm 0.09$ $a_2^1(\mu_0) = -0.20 \pm 0.07$

Extension to $\eta_c \gamma$

solid (dashed, dotted) line: $m_c = 1.35(1.49, 1.21) \text{ GeV}$ PDG: $m_c = 1.25 \pm 0.09 \text{ GeV}$

in contrast to $\pi\gamma$ form factor: behavior predicted Feldmann-K(97) data BaBar(10)

$$T_H = \frac{2\sqrt{6} e_c^2}{xQ^2 + (1 + 4x(1 - x))m_c^2 + k_\perp^2}$$

2nd scale, Sudakov unimportant

$$\Phi_{\eta_c} = Nx(1-x) \exp\left[-\sigma_{\eta_c}^2 M_{\eta_c}^2 \frac{(x-1/2)^2}{x(1-x)}\right]$$

Wirbel-Stech-Bauer(85)

The time-like region

collinear factorization to LO accuracy: time-like = space-like (at $s = Q^2$)

within m.p.a. (as proposed by Gousset-Pire(94) for pion elm. FF)

$$1/(xQ^2 + k_{\perp}^2) \longrightarrow 1/(-xs + k_{\perp}^2 - i\epsilon) \quad \text{or} \quad K_0(\sqrt{x}Qb) \longrightarrow \frac{i\pi}{2}H_0^{(1)}(\sqrt{x}sb)$$

analytic continuation of Sudakov f. not well understood (Magnea-Sterman(90)) (probably leads to an oscillating phase) Gousset-Pire: take space-like Sudakov factor

estimate:

$$\begin{split} s &= 112 \,\text{GeV}^2: \qquad s|F_{\eta\gamma}| = 0.23 \,\text{GeV} \qquad s|F_{\eta'\gamma}| = \\ & \mathsf{BaBar(06)}: \ s|F_{\eta\gamma}| = 0.229 \pm 0.031 \,\text{GeV} \qquad s|F_{\eta'\gamma}| = \\ & \mathsf{ratio time-like/space-like about 1.14} \end{split}$$

$$s|F_{\eta'\gamma}| = 0.23 \,\text{GeV}$$

 $s|F_{\eta'\gamma}| = 0.251 \pm 0.021 \,\text{GeV}$

Consequences for the pion elm. form factor

perturbative contribution:

with distr. amplitude from best fit to $\pi\gamma$ form fator with Φ_{AS} Jakob-K.(93)

Summary

even this simple excl. observable, believed to be understood very well, is subject to strong power suppressed corrections visible even at Q^2 as large as 40 GeV^2

casts severe doubts on every attempt to explain other excl. observables within coll. factorization frame work (e.g. pion or proton FF)

quark-transverse momenta and Sudakov suppressions is one way to estimate power corrections; existing data on $P\gamma$ trans. form factor ($P = \pi, \eta, \eta', \eta_c$) can well be described within that approach. One Gegenbauer coeff. of DA can be determined from data

preserves standard asymptotics $Q^2 F_{\pi\gamma} \rightarrow \sqrt{2} f_{\pi}$

 $\pi\gamma$ form factor should be remeasured by BELLE