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The SFT inspired nonlocal cosmological models

From the Witten action of bosonic cubic string field theory,
considering only tachyon scalar field φ(x) one obtains:

S =
1

g2
o

∫
d26x

[
α′

2
φ(x)¤φ(x) +

1

2
φ2(x)− 1

3
γ3Φ3(x)− Λ̃

]
, (1)

where

Φ = ek¤φ, k = α′ ln(γ), γ =
4

3
√

3
. (2)

go is the open string coupling constant, α′ is the string length
squared and Λ̃ = 1

6γ
−6 is added to the potential to set the local

minimum of the potential to zero. The action (1) leads to
equation of motion

(α′¤ + 1)e−2k¤Φ = γ3Φ2. (3)
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In the majority of the SFT inspired nonlocal gravitation mod-
els the action is introduced by hand as a sum of the SFT action
of tachyon field and gravity part of the action:

S =
1

g2
o

∫
d4x

√−g

(
M 2

P

2
R +

1

2
φ¤gφ +

1

2
φ2 − 1

3
γ3Φ3 − Λ

)
, (4)

Action (4) includes a nonlocal potential. Using a suitable
redefinition of the fields, one can made the potential local, at
that the kinetic term becomes nonlocal.

This nonstandard kinetic term leads to a nonlocal field be-
havior similar to the behavior of a phantom field, and it can
be approximated with a phantom kinetic term.

The behavior of an open string tachyon can be effectively
simulated by a scalar field with a phantom kinetic term.

Another type of the SFT inspired models includes nonlocal
modification of gravity.

Recently G. Calcagni and G. Nardelli have considered non-
local gravity with nonlocal scalar field (arXiv: 1004.5144).
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Nonlocal action in the general form

We consider a general class of gravitational models with a non-
local scalar field, which are described by the following action:

S =

∫
d4x

√−gα′
(

R

16πGN
+

1

g2
o

(
1

2
φF(¤g)φ− V (φ)

)
− Λ

)
, (5)

GN is the Newtonian constant: 8πGN = 1/M 2
P ,

MP is the Planck mass.
We use the signature (−, +, +, +),
gµν is the metric tensor,
R is the scalar curvature,
Λ is the cosmological constant.
Hereafter the d’Alembertian ¤g is applied to scalar functions

and can be written as follows

¤g =
1√−g

∂µ

√−ggµν∂ν . (6)
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The function F(¤g) is assumed to be an analytic function:

F(¤g) =

∞∑
n=0

fn¤ n
g . (7)

Note that the term φF(¤g)φ include not only terms with
derivatives, but also f0φ

2.
In an arbitrary metric the energy-momentum tensor

Tµν = − 2√−g

δS

δgµν
=

1

g2
o

(
Eµν + Eνµ − gµν (gρσEρσ + W )

)
, (8)

Eµν ≡ 1

2

∞∑
n=1

fn

n−1∑

l=0

∂µ¤l
gφ∂ν¤n−1−l

g φ, (9)

W ≡ 1

2

∞∑
n=2

fn

n−1∑

l=1

¤l
gφ¤n−l

g φ− f0

2
φ2 + V (φ). (10)
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From action (5) we obtain the following equations

Gµν = 8πGN (Tµν − Λgµν) , (11)

F(¤g)φ =
dV

dφ
, (12)

where Gµν is the Einstein tensor.
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From action (5) we obtain the following equations

Gµν = 8πGN (Tµν − Λgµν) , (13)

F(¤g)φ =
dV

dφ
, (14)

where Gµν is the Einstein tensor.

It is a system of nonlocal nonlinear equations !!!

HOW CAN WE FIND A SOLUTION?
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The Ostragradski representation.

• M. Ostrogradski, Mémoire sur les équations differentielles
relatives aux problèmes des isoperimétres, Mem. St. Pe-
tersbourg VI Series, V. 4 (1850) 385–517

• A. Pais and G.E. Uhlenbeck, On Field Theories with Nonlo-
calized Action, Phys. Rev. 79 (1950) 145–165

Let F is a polynomial:

F(¤) = F1(¤) ≡
N∏

j=1

(
1 +

¤
ω2

j

)
, (15)

all roots, which are equal to −ω2
j , are simple.

We want to get the Ostrogradski representation for

LF = φF1(¤)φ. (16)

We should find such numbers cj, that the Lagrangian LF can
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be written in the following form

Ll =

N∑
j=1

cjφj(¤ + ω2
j )φj. (17)

φj =

N∏

k=1,k 6=j

(
1 +

1

ω2
k

¤
)

φ, ⇒ (
¤ + ω2

j

)
φj = 0. (18)

Substituting φj in Ll, we get

Ll
∼= LF ⇔

N∑

k=1

ckω
4
k

ω2
k + ¤ =

1

F1(¤)
. (19)

All roots of F1(¤) are simple, hence, we can perform a partial
fraction decomposition of 1/F1(¤).

ck =
F ′

1(−ω2
k)

ω4
k

, where F1(−ω2
k)
′ ≡ dF1

d¤ |¤=−ω2
k
. (20)

Let F1(¤) has two real simple roots. F ′
1 > 0 in one and only one

root. We get model with one phantom and one real root.
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An algorithm of localization in the case of an arbi-
trary quadratic potential V (φ) = C2φ

2 + C1φ + C0.

Veff =

(
C2 − f0

2

)
φ2 + C1φ + C0 + Λ. (21)

We can change values of f0 and Λ such that the potential
takes the form V (φ) = C1φ.

In other words, we put C2 = 0 and C0 = 0.
There exist 3 cases:

• C1 = 0

• C1 6= 0 and f0 6= 0

• C1 6= 0 and f0 = 0

I will speak about the case C1 = 0. Cases C1 6= 0 have been
considered in S.V., arXiv:1005.0372.
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Let us consider the case C1 = 0 and the equation

F(¤g)φ = 0. (22)

We seek a particular solution of (14) in the following form

φ0 =

N1∑
i=1

φi +

N2∑

k=1

φ̃k. (23)

(¤g − Ji)φi = 0, (24)

Ji are simple roots of the characteristic equation F(J) = 0.
J̃k are double roots. The fourth order differential equation

(¤− J̃k)
2φ̃k = 0 (25)

is equivalent to the following system of equations:

(¤− J̃k)φ̃k = ϕk, (¤− J̃k)ϕk = 0. (26)
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Energy–momentum tensor for special solutions

If we have one simple root φ1 such that ¤gφ1 = J1φ1, then

Eµν(φ1) =
1

2

∞∑
n=1

fn

n−1∑

l=0

Jn−1
1 ∂µφ1∂νφ1 =

F ′(J1)

2
∂µφ1∂νφ1.

W (φ1) =
1

2

∞∑
n=1

fn

n−1∑

l=0

Jn
1 φ2

1 =
J1

2

∞∑
n=1

fnnJn−1
1 φ2

1 =
J1F ′(J1)

2
φ2

1.

In the case of two simple roots φ1 and φ2 we have

Eµν(φ1 + φ2) = Eµν(φ1) + Eµν(φ2) + Ecr
µν(φ1, φ2), (27)

where the cross term

Ecr
µν(φ1, φ2) = A1∂µφ1∂νφ2 + A2∂µφ2∂νφ1. (28)

A1 =
1

2

∞∑
n=1

fnJ
n−1
1

n−1∑

l=0

(
J2

J1

)l

=
F(J1)−F(J2)

2(J1 − J2)
= 0, (29)

A2 = 0. (30)
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So, the cross term Ecr
µν(φ1, φ2) = 0 and

Eµν(φ1 + φ2) = Eµν(φ1) + Eµν(φ2) (31)

Similar calculations shows

W (φ1 + φ2) = W (φ1) + W (φ2). (32)

In the case of N simple roots the following formula has been
obtained:

Tµν =

N∑

k=1

F ′(Jk)

(
∂µφk∂νφk − 1

2
gµν

(
gρσ∂ρφk∂σφk + Jkφ

2
k

))
. (33)

Note that the last formula is exactly the energy-momentum
tensor of many free massive scalar fields. If F(J) has simple
real roots, then positive and negative values of F ′(Ji) alternate,
so we can obtain phantom fields.
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Let J̃1 is a double root. The fourth order differential equation
(¤ − J̃1)

2φ̃1 = 0 is equivalent to the following system of equa-
tions:

(¤− J̃1)φ̃1 = ϕ1, (¤− J̃1)ϕ1 = 0. (34)

It is convenient to write ¤lφ̃1 in terms of the φ̃1 and ϕ1:

¤lφ̃1 = J̃ l
1φ̃1 + lJ̃ l−1

1 ϕ1. (35)

Eµν(φ̃1) = B1∂µφ̃1∂νφ̃1 + B2∂µφ̃1∂νϕ1 + B3∂µφ1∂νϕ̃1 + B4∂µϕ1∂νϕ1, (36)

where

B1 =
F ′(J̃1)

2
= 0, B2 = B3 =

F ′′(J̃1)

4
, B4 =

F ′′′(J̃1)

12
.

Thus, for one double root we obtain the following result:

Eµν(φ̃1) =
F ′′(J̃1)

4
(∂µφ̃1∂νϕ1 + ∂µφ1∂νϕ̃1) +

F ′′′(J̃1)

12
∂µϕ1∂νϕ1.

Similar calculations gives

W (φ̃1) =
J̃1F ′′(J̃1)

2
φ̃1ϕ1 +

(
J̃1F ′′′(J̃1)

12
+
F ′′(J̃1)

4

)
ϕ2

1. (37)
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For any analytical function F(J), which has simple roots Ji

and double roots J̃k, the energy–momentum tensor

Tµν (φ0) = Tµν

(
N1∑
i=1

φi +

N2∑

k=1

φ̃k

)
=

N1∑
i=1

Tµν(φi) +

N2∑

k=1

Tµν(φ̃k), (38)

where

Tµν =
1

g2
o

(
Eµν + Eνµ − gµν (gρσEρσ + W )

)
, (39)

Eµν(φi) =
F ′(Ji)

2
∂µφi∂νφi, W (φi) =

JiF ′(Ji)

2
φ2

i , F ′ ≡ dF
dJ

(40)

Eµν(φ̃k) =
F ′′(J̃k)

4

(
∂µφ̃k∂νϕk + ∂νφ̃k∂µϕk

)
+
F ′′′(J̃k)

12
∂µϕk∂νϕk, (41)

W (φ̃k) =
J̃kF ′′(J̃k)

2
φ̃kϕk +

(
J̃kF ′′′(J̃k)

12
+
F ′′(J̃k)

4

)
ϕ2

k. (42)

16



Consider the following local action

Sloc =

∫
d4x

√−g

(
R

16πGN
− Λ

)
+

N1∑
i=1

Si +

N2∑

k=1

S̃k, (43)

where

Si = − 1

g2
o

∫
d4x

√−g
F ′(Ji)

2

(
gµν∂µφi∂νφi + Jiφ

2
i

)
,

S̃k = − 1

g2
o

∫
d4x

√−g

(
gµν

(
F ′′(J̃k)

4

(
∂µφ̃k∂νϕk + ∂νφ̃k∂µϕk

)
+

+
F ′′′(J̃k)

12
∂µϕk∂νϕk

)
+

J̃kF ′′(J̃k)

2
φ̃kϕk +

(
J̃kF ′′′(J̃k)

12
+
F ′′(J̃k)

4

)
ϕ2

k

)
.

Remark 1. If F(J) has an infinity number of roots then one
nonlocal model corresponds to infinity number of different local
models. In this case the initial nonlocal action (5) generates
infinity number of local actions (43).
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Remark 2. We should prove that the way of localization
is self-consistent. To construct local action (43) we assume
that equations (24) are satisfied. Therefore, the method of
localization is correct only if these equations can be obtained
from the local action Sloc. The straightforward calculations
show that

δSloc

δφi
= 0 ⇔ ¤gφi = Jiφi;

δSloc

δφ̃k

= 0 ⇔ ¤gϕk = J̃kϕk. (44)

δSloc

δϕk
= 0 ⇔ ¤gφ̃k = J̃kφ̃k + ϕk. (45)

We obtain from Sloc the Einstein equations as well:

Gµν = 8πGN (Tµν(φ0)− Λgµν) , (46)

where φ0 is given by (23) and Tµν(φ0) can be calculated by (38).
Any solutions of system (44)–(46) are particular solutions of

the initial nonlocal system (13)–(14).
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To clarify physical interpretation of local fields φ̃k and ϕk, we
diagonalize the kinetic terms of these scalar fields in Sloc.

Expressing φ̃k and ϕk in terms of new fields:

φ̃k =
1

2F ′′(J̃k)

((
F ′′(J̃k)− 1

3
F ′′′(J̃k)

)
ξk −

(
F ′′(J̃k) +

1

3
F ′′′(J̃k)

)
χk

)
,

ϕk = ξk + χk,

we obtain the corresponding S̃k in the following form:

S̃k = − 1

g2
o

∫
d4x

√−g

(
gµνF ′′(J̃k)

4

(
∂µξk∂νξk − ∂νχk∂µχk

)
+

+
J̃k

4

(
(F ′′(J̃k)− 1

3
F ′′′(J̃k))ξk − (F ′′(J̃k) +

1

3
F ′′′(J̃k))χk

)
(ξk + χk) +

+

(
J̃kF ′′′(J̃k)

12
+
F ′′(J̃k)

4

)
(ξk + χk)

2

)
.
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For a quadratic potential V (φ) = C2φ
2 + C1φ + C0

there exists the following algorithm of localization :

• Change values of f0 and Λ such that the potential takes the
form V (φ) = C1φ.

• Find roots of the function F(J) and calculate orders of them.

• Select an finite number of simple and double roots.

• Construct the corresponding local action. In the case C1 = 0
one should use formula (43).

• Vary the obtained local action and get a system of the Ein-
stein equations and equations of motion.

• Seek solutions of the obtained local system.
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Conclusions 1

We have studied the SFT inspired nonlocal models with quadratic
potentials and obtained:

• The Ostrogradski representations for nonlocal Lagrangians
in an arbitrary metric.

• The algorithm of localization.

• Local and nonlocal Einstein equations have one and the
same solutions.

• Nonlocality arises in the case of F(¤g) with an infinite num-
ber of roots.

• One system of nonlocal Einstein equations ⇔ Infinity num-
ber of systems of local Einstein equations.
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SOLUTIONS FOR EQUATIONS OF MOTION

(S.V. arXiv:1005.5007)

Let us consider nonlocal Klein–Gordon equation in the case
of an arbitrary potential:

F(¤g)φ = V ′(φ), (47)

where prime is a derivative with respect to φ. A particular
solution of (47) is a solution of the following system:

N−1∑
n=0

fn¤ n
g φ = V ′(φ)− C, fN¤ N

g φ = C, (48)

where N − 1 is a natural number, C is an arbitrary constant.
In the case f1 6= 0 we can choose N = 2.
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In the spatially flat FRW metric with the interval:

ds2 = − dt2 + a2(t)
(
dx2

1 + dx2
2 + dx2

3

)
, (49)

where a(t) is the scale factor, we obtain from (48):

f1¤gφ = − f1

(
φ̈ + 3Hφ̇

)
= V ′(φ)− f0φ− C, f2¤ 2

g φ = C. (50)

The Hubble parameter

H = − 1

3φ̇

(
φ̈ + Ṽ ′(φ)− C

f1

)
, (51)

where

Ṽ ′(φ) ≡ 1

f1
(V ′(φ)− f0φ) . (52)

Equation

(∂2
t + 3H∂t)

(
φ̈ + 3Hφ̇

)
=

C

f2
, (53)

is as follows

(∂2
t + 3H∂t)Ṽ

′ = Ṽ ′′′φ̇2 + Ṽ ′′(φ̈ + 3Hφ̇) = − C

f2
. (54)
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We eliminate H and obtain

φ̇2 =
1

Ṽ ′′′

(
Ṽ ′′Ṽ ′ − C

f1
Ṽ ′′ − C

f2

)
. (55)

The obtained equation can be solved in quadratures. Its gen-
eral solution depend on two arbitrary parameters C and t0,
which corresponds to the time shift.

It allows to find solutions for an arbitrary potential V (φ), with
the exception of linear and quadratic potentials.

Note that we do not consider other Einstein equations. In
distinguish to the localization method, which allows to localize
all Einstein equations, this method solves only the field equa-
tion, whereas the obtained solutions maybe do not solve other
equations.

The adding of other type of matter can give an exact solution
of the system of all Einstein equations.
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CUBIC POTENTIAL
The case of cubic potential is is connected with the bosonic

string field theory:

V (φ) = B3φ
3 + B2φ

2 + B1φ + B0, (56)

where B0, B1, B2, and B3 are arbitrary constants, but B3 6= 0.
For this potential we get (55) in the following form

φ̇2 = 4C3φ
3 + 6C2φ

2 + 4C1φ + C0, (57)

C0 =
(B1 − C)(2B2 − f0)

6f1B3
− Cf 2

1

6f1f2B3
, C2 =

2B2 − f0

4f1
, (58)

C1 =
6B3(B1 − C) + (2B2 − f0)

2

24f1B3
, C3 =

3B3

4f1
. (59)

Note, that C3 6= 0 since B3 6= 0. Using the transformation

φ =
1

2C3
(2ξ − C2), ⇒ ξ̇2 = 4ξ3 − g2ξ − g3, (60)

where

g2 =
(2B2 − f0)

2 − 12B3(B1 − C)

16f 2
1

, g3 = − 3B3C

32f2f1
.
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A solution of equation (60) is the Weierstrass elliptic function

ξ(t) = ℘(t− t0, g2, g3) (61)

or a degenerate elliptic function.
Let us consider degenerated cases. At g2 = 0 and g3 = 0

φ1 =
4f1

3B3(t− t0)2
− 2B2 − f0

6B3
, H1 =

5

3(t− t0)
. (62)

We have also obtained a bounded solution, which tends to a
finite limit at t →∞:

φ2 = D2 tanh(β(t− t0))
2 + D0, (63)

D2 =
4

3B3
f1β

2, D0 =
1

18B3

(
3(f0 − 2B2)− 16f1β

2
)
, (64)

where β is a root of the following equation

1024f2f1β
6 + 576f 2

1β
4 + 324B3B1 − 27(2B2 − f0)

2 = 0. (65)

The solution φ2 exists at

C =
1

36B3

(
64f 2

1β
4 − 3(2B2 − f0)

2 + 36B3B1

)
. (66)
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Cosmological model with a nonlocal scalar field
and a k-essence field

Let us consider the k-essence cosmological model with a non-
local scalar field:

S2 =

∫
d4x

√−gα′
(

R

16πGN
+

1

g2
o

(
1

2
φF(¤g)φ− V (φ)

)
− P(Ψ, X)− Λ

)
,

(67)
where

X ≡ − gµν∂µΨ∂νΨ. (68)

In the FRW metric X = Ψ̇2.
The standard variant of the k-essence field Lagrangian

P(Ψ, X) =
1

2
(pq(Ψ)−%q(Ψ))+

1

2
(pq(Ψ)+%q(Ψ))X+

1

2
M 4(Ψ)(X−1)2. (69)

Here pq(Φ), %q(Φ), and M 4(Φ) are arbitrary differentiable func-
tions. The energy density is

E(Ψ, X) = (pq(Ψ) + %q(Ψ))X + 2M 4(Ψ)(X2 −X)− P(Ψ, X). (70)
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The Einstein equations are

3H2 = 8πGN(% + E + Λ), (71)

2Ḣ + 3H2 = − 8πGN(p + P − Λ). (72)

From S2 we also have equation

F(¤g)φ = V ′(φ), (73)

and
Ė = − 3H (E + P) . (74)

A k-essence model (without an additional field)
has one important property. For any real differen-
tiable function H0(t), there exist such real differen-
tiable functions %q(Φ) and pq(Φ) that the functions
H0(t) and Ψ(t) = t are a particular solution for the
system of the Einstein equations.
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This property can be generalized on the model with the ac-
tion S2.

If Ψ(t) = t, then

E = %q(Ψ) = %q(t), P = pq(Ψ) = pq(t). (75)

Substituting %q and pq in (71)–(74), we get

%q(Ψ) = %q(t) =
3

8πGN
H2

0(t)− %(t)− Λ, (76)

pq(Ψ) = pq(t) = − %q(t)− %(t)− p(t)− 1

4πGN
Ḣ(t). (77)

Using f2¤ 2
g φ2 = C, one can get the energy–momentum tensor

for φ = φ2:

Eµν(φ2) =
1

2
(f1∂µφ∂νφ + f2(∂µ¤gφ∂νφ + ∂µφ∂ν¤gφ) + f3∂µ¤gφ∂ν¤gφ) ,

W (φ2) =
1

2

(
f2¤gφ

2 + 2
f3C

f2
¤gφ +

f4C
2

f 2
2

)
− f0

2
φ2 + V (φ).

In the FRW metric

% = E00 + W, p = E00 −W. (78)
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Conclusions 2

So, we can propose the following algorithm to construct exact
solvable k-essence cosmological models with a nonlocal scalar
fields and an arbitrary V (φ), except linear and quadratic po-
tentials:

• For given potential V (φ) find H(t) and φ(t) as a particular
solution for

F(¤g)φ = V ′(φ). (79)

• Calculate p and % for the obtained solution.

• Add k-essence field in the action.

• Using the Einstein equations, calculate %q(Ψ) and pq(Ψ). The
exact solution corresponds to Ψ(t) = t.
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