Possible explanation of BaBar anomaly with the use of Sudakov vertex

E. A. Kuraev ${ }^{1}$, Yu. M. Bystritskiy ${ }^{1}$, V. V. Bytev ${ }^{1}$, A. N. Ilyichev ${ }^{2}$

1 JINR, BLTP, Dubna, Russia
${ }^{2}$ National Scientific and Educational Centre of Particle and High Energy Physics of the Belarusian State University, Minsk, Belarus

International Workshop "Bogoliubov readings" 2010
September 24, 2010

Process $e^{+} e^{-} \rightarrow \pi_{0} e^{+} e^{-}$

The process $e^{+} e^{-} \rightarrow \pi_{0} e^{+} e^{-}:$

is described my two diagrams:

$$
\begin{equation*}
M_{s c}=\frac{2 s(4 \pi \alpha)^{2}}{q^{2} q_{1}^{2}}\left[\mathbf{q} \times \mathbf{q}_{1}\right]_{z} V\left(Q^{2}\right) N_{+} N_{-}, \quad M_{a n n}=\frac{(4 \pi \alpha)^{2}}{q_{1}^{2} q^{2}} J^{\mu} J^{\nu(l)} V(s) \epsilon_{\mu \nu \alpha \beta} q^{\alpha} q_{1}^{\beta} \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{lrl}
N_{+}=\frac{p_{-}^{\mu}}{s}\left[\bar{v}\left(p_{+}^{\prime}\right) \gamma_{\mu} v\left(p_{+}\right)\right], & J^{\mu} & =\left[\bar{v}\left(p_{+}\right) \gamma^{\mu} u\left(p_{-}\right)\right] \\
N_{-}=\frac{p_{+}^{\mu}}{s}\left[\bar{u}\left(p_{-}^{\prime}\right) \gamma_{\mu} u\left(p_{-}\right)\right], & J^{\nu(l)}=\left[\bar{u}_{l}\left(q_{-}\right) \gamma^{\nu} v_{l}\left(q_{+}\right)\right] \tag{2}
\end{array}
$$

and $V\left(Q^{2}\right)$ is the vertex, which related with the neutral pion form factor $F\left(Q^{2}\right)$ as:

$$
\begin{equation*}
V\left(Q^{2}\right)=\frac{M_{q}^{2}}{2 \pi^{2} F_{\pi} Q^{2}} F\left(\frac{Q^{2}}{M_{q}^{2}}\right) \tag{3}
\end{equation*}
$$

Pion Form Factor

Pion form factor for vertex $\pi^{0} \rightarrow 2 \gamma$ can be parameterized in different manners.
In the approach based on QCD collinear factorization theorem
 (G. P. Lepage and S. J. Brodsky, Phys. Lett. B87, 359 (1979))

$$
\begin{equation*}
V^{B L}\left(Q^{2}\right)=\frac{2 F_{\pi}}{3} \int_{0}^{1} \frac{d x}{x Q^{2}} \phi_{\pi}(x, s), \tag{4}
\end{equation*}
$$

and in the papers S. V. Mikhailov and N. G. Stefanis, Nucl. Phys. B821, 291 (2009); M. V. Polyakov, JETP Lett. 90, 228 (2009) different forms of pion wave function $\phi_{\pi}(x, s)$ was used. Also in the paper L. Ametler,L. Bergstrom,A. Bramon, and E. Masso, Nucl. Phys. B228, 301 (1983);
A. E. Dorokhov, (2009), arXiv:0905.4577 was pointed that pion form factor in the frames of the constituent quark model has the double logarithmic asymptotic at large momentum transfer.

$$
\begin{equation*}
V\left(Q^{2}\right)=\frac{m_{\pi}^{2}}{m_{\pi}^{2}+t} \frac{1}{2 \arcsin ^{2}\left(\frac{m_{\pi}}{2 M_{Q}}\right)}\left\{2 \arcsin ^{2}\left(\frac{m_{\pi}}{2 M_{Q}}\right)+\frac{1}{2} \ln ^{2} \frac{\beta_{Q}+1}{\beta_{Q}-1}\right\} \tag{5}
\end{equation*}
$$

where $\beta_{Q}=\sqrt{1+\frac{4 M_{Q}^{2}}{Q^{2}}}$.

Our approach: Sudakov vertex

We suppose Sudakov type of radiative corrections in one of the vertexes (V. V. Sudakov, Sov. Phys. JETP 3, 65 (1956); E. A. Kuraev and V. S. Fadin, Yad. Fiz. 27, 1107 (1978)).

$$
\begin{align*}
& F\left(Q^{2} / M_{q}^{2}\right)=-\int \frac{d^{4} k}{i \pi^{2}} \times \\
& \times \frac{Q^{2} R_{S}\left(Q^{2}, p_{1}^{2}, p_{2}^{2}\right)}{\left(k^{2}-M_{q}^{2}+i 0\right)\left(p_{1}^{2}-M_{q}^{2}+i 0\right)\left(p_{2}^{2}-M_{q}^{2}+i 0\right)}, \tag{6}
\end{align*}
$$

where $p_{1}=k+q_{1}$, and $p_{2}=k+q_{\pi}$ and Sudakov vertex function R_{S} (J. J. Carazzone, E. C. Poggio, and H. R. Quinn, Phys. Rev. D11, 2286 (1975); J. M. Cornwall and G. Tiktopoulos, Phys. Rev. D13, 3370 (1976)) is:

$$
\begin{equation*}
R_{S}\left(Q^{2}, p_{1}^{2}, p_{2}^{2}\right)=\exp \left(-\frac{\alpha_{s} C_{F}}{2 \pi} \ln \frac{Q^{2}}{\left|p_{1}^{2}\right|} \ln \frac{Q^{2}}{\left|p_{2}^{2}\right|}\right) \tag{7}
\end{equation*}
$$

where $Q^{2} \gg\left|p_{1,2}^{2}\right| \gg M_{q}^{2}$ and $C_{F}=\left(N^{2}-1\right) /(2 N)=4 / 3$. We use here the the Goldberger-Treiman relation on the quark level $F_{\pi}=M_{q} / g_{q \bar{q} \pi}=93 \mathrm{MeV}$.

Our approach: Results

The cross section of process $e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0}$ is

$$
\begin{aligned}
\frac{d \sigma}{d Q^{2}} & =\frac{\alpha^{4}}{4 Q^{2}} V^{2}\left(Q^{2}\right) J\left(Q^{2}\right), \\
J\left(Q^{2}\right) & =\frac{1}{2} L_{s}^{2}+L_{s}\left(L_{e}-1\right)-\left(L_{e}+1\right)
\end{aligned}
$$

where $L_{s}=\ln \frac{s}{Q^{2}+M^{2}}$, $L_{e}=\ln \frac{Q^{2}}{m_{e}^{2}}$ and $V\left(Q^{2}\right)$ is the Sudakov vertex:

$$
\begin{equation*}
V\left(Q^{2}\right)=A \frac{M_{q}^{2}}{2 \pi F_{\pi} \alpha_{s} C_{F}} \Phi\left(z_{B}\right) \tag{9}
\end{equation*}
$$

where $\quad \Phi\left(z_{B}\right)=\int_{0}^{1} \frac{d x}{x}\left(1-e^{-z_{B} x(1-x)}\right), \quad z_{B}=\frac{C_{F} \alpha_{s}}{2 \pi} \ln ^{2} \frac{Q^{2}}{B M_{q}^{2}}$.
Quantities A and B can be considered as a positive fitting parameters of order of unity. We fixed their values as $A=0.49$ and $B=0.23$ (which corresponds to effective quark mass $m_{q} \approx 135 \mathrm{MeV}$) by fitting the BaBar data (The BABAR, B. Aubert et al., Phys. Rev. D80, 052002 (2009)).

Annihilation channel

The annihilation channel of $e^{+} e^{-} \rightarrow \ell^{+} \ell^{-} \pi^{0}, \ell=\mu, \tau$ process:

$$
\begin{align*}
& e^{+}\left(p_{+}\right)+e^{-}\left(p_{-}\right) \rightarrow \gamma^{*}(q) \rightarrow \\
& \quad \rightarrow \pi^{0}\left(q_{\pi}\right) \ell^{+}\left(q_{+}\right) \ell^{-}\left(q_{-}\right) \tag{10}
\end{align*}
$$

where $p_{ \pm}^{2}=0, q_{ \pm}^{2}=m_{\ell}^{2}, q_{\pi}^{2}=M^{2}$,
$s=q^{2}=\left(p_{+}+p_{-}\right)^{2}, s_{1}=q_{1}^{2}=\left(q_{+}+q_{-}\right)^{2}$.
The matrix element of this process is:

$$
\begin{align*}
M & =\frac{(4 \pi \alpha)^{2}}{q_{1}^{2} q^{2}} J^{\mu} J^{\nu(\ell)} V(s) \epsilon_{\mu \nu \alpha \beta} q^{\alpha} q_{1}^{\beta}, \\
J^{\mu} & =\bar{v}\left(p_{+}\right) \gamma_{\mu} u\left(p_{-}\right), \\
J^{\nu(\ell)} & =\bar{v}_{\ell}\left(q_{+}\right) \gamma_{\nu} u_{\ell}\left(q_{-}\right), \tag{11}
\end{align*}
$$

where quantity $V(s)$ describes conversion of two off mass shell photons to the neutral pion (pion transition formfactor, $V\left(Q^{2}\right)=\frac{M_{q}^{2}}{2 \pi^{2} F_{\pi} Q^{2}} F\left(\frac{Q^{2}}{M_{q}^{2}}\right)$).
The total cross section have a form:

$$
\begin{equation*}
\sigma^{e \bar{e} \rightarrow \pi_{0} \ell \bar{\ell}}=\frac{\pi \alpha^{4} V(s)^{2}}{6}\left(1-\frac{M^{2}}{s}\right)^{3}\left[\ln \frac{s}{m_{\ell}^{2}}-\frac{5}{3}\right] . \tag{12}
\end{equation*}
$$

Conclusions

In conclusion we should emphasize once again that applying Sudakov radiative corrections to quark vertex function we imply rather large value of virtualities of one of the photons (i.e. $\left|q^{2}\right| \geq 5 \mathrm{GeV}^{2}$). Thus our approach differs from the ones based on pion wave function modification A. V. Radyushkin, Phys. Rev. D80, 094009 (2009) as well as ones based on instanton model A. E. Dorokhov, Phys. Part. Nucl. Lett. 7, 229 (2010); A. E. Dorokhov, JETP Lett. 91, 163 (2010); A. E. Dorokhov, Nucl. Phys. Proc. Suppl. 198, 190 (2010); A. E. Dorokhov, arXiv:1003.4693 which impose some restriction in loop momentum integration.

We remind as well the possibility to measure the transition pion form factor in electro-proton scattering $e p \rightarrow e \pi_{0} p$. The relevant cross section will be

$$
\begin{equation*}
\frac{d \sigma^{e p \rightarrow e \pi_{0} p}}{d Q^{2}}=\left(\frac{\alpha g_{\rho q q} g_{\rho N N}}{8 \pi\left(Q^{2}+M_{\rho}^{2}\right)}\right)^{2} \frac{V^{2}\left(Q^{2}\right)}{Q^{2}}\left[F_{1}^{2}\left(Q^{2}\right)+\frac{Q^{2}}{4 M_{p}^{2}} F_{2}^{2}\left(Q^{2}\right)\right] J\left(Q^{2}\right), \tag{13}
\end{equation*}
$$

where F_{1}, F_{2} - are Dirac and Pauli proton form factors and

$$
J\left(Q^{2}\right)=\frac{1}{2} L_{s}^{2}+L_{s}\left(L_{e}-1\right)-\left(L_{e}+1\right), \quad L_{s}=\ln \frac{s}{Q^{2}+M^{2}}, \quad L_{e}=\ln \frac{Q^{2}}{m_{e}^{2}}
$$

Here instead of virtual photon the virtual vector meson takes place; $g_{\rho q q}, g_{\rho N N}$ are the ρ meson couplings with quarks and nucleons correspondingly. In this case a problem with background ($e p \rightarrow e \Delta^{+} \rightarrow e \pi^{0} p$) must be overcomed.

