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Infrared behavior of the gluon propagator in the Landau gauge
is of interest because

◮ Propagator is needed for calculation of physical quantities;
◮ The Kugo-Ojima and Gribov-Zwanziger confinement

criteria
are formulated in terms of propagator behavior
in the Euclidean domain.

If the Osterwalder-Schrader reflection positivity
is violated for the gluon fields,

one cannot construct
the respective Hilbert space with positive metric.

The gluon fields are not associated with asymptotic states.

=⇒ gluons are confined



◮ It is of interest to compare lattice and continuum results for
the propagator

◮ Gauge fixing on a lattice is also of intererst because the
respective continuum gauge theory is defined only in a
particular gauge.



The gluon propagator in the Landau gauge:

Dab
µν(p) = δab

(

δµν − pµpν

p2

)

D(p)

The Functional Renormalization Group (FRG)
and the Schwinger–Dyson Equations (SDE)
imply at p → 0 [Fischer, Pawlowsky, 2006; Alkofer etc]:

◮ scaling solution:

D(p) ≃ (p2)2κ + (2−D)/2 DGh(p) ≃ (p2)−1−κ, (1)

◮ massive solution

D(p) ≃ const DGh(p) ≃ Z
(p2)

, (2)



S =
4
g2

∑

P=x,µ,ν

(

1 − 1
2

Tr UP

)

where

UP = Ux,µUx+µ̂,νU†
x+ν̂,µU†

x,ν

Ux,µ ∈ SU(2), D = 3

Ux,µ = u0 + i
3

∑

a=1

uaσa, (3)

Aa
µ = −

2ua
µ

ga
, (4)

Λ : Ux,µ → Λ†
xUx,µΛx+µ̂,

We fix the absolute Landau
gauge by finding the global
maximum of the functional

F [ U ] =
∑

x,µ

Tr Ux,µ, (5)

Stationarity condition:

∂νAa
ν = 0.



Gribov copies: residual gauge orbit

R(U) = {Um|Um = Ugm , δF [Um] = 0}

.

◮ Minimal Landau gauge:
to select any element ∈ R

◮ Absolute Landau gauge:
to select the element with the maximal value of F [Um].

D(p) 6= D(p)!!!

Problem of degenerate maxima.



x1, x2

Center symmetry:

ZZ2 : Ux,µ → − Ux,µ

L(x1, x2) → −L(x1, x2)

L(x1, x2) = Tr
Nτ
∏

j=1

U(x + j 3̂, 3) = P exp
(

iga
∮

Ac
µ(z)Γcdz

)

.



We extend the gauge group

G −→ GE = G × ZZ 3
2 , (6)

where G = {Ω(x)}, Ω(x) ∈ SU(2):

Ux,µ → Ω†
xUx,µΩx+µ̂, . (7)

The configuration space {U} is divided into 8 ZZ 3
2 sectors,

according to the signs of

La
∑

xµ=a

La
∑

xν=a

L(xµ, xν)



Gauge fixing algorithm

◮ We generate a configuration U0

using the heat bath method,

◮ perform ZZ 3
2 transformations

and obtain U1, ...,U7 associated with U0.
All of them have the same Wilson action, however,
they cannot be transformed into each other by a proper
gauge transformation.
Nevertheless, we consider them as Gribov copies
corresponding to the extended gauge group.



◮ In the sth sector, we produce NB elements V̄sk of the
gauge orbit, associated with Us.

◮

Fsk(g) ≡ F(Vg
sk ) (8)

is the functional on G. Its maxima provide Gribov copies.

◮ we begin with the “Simulated Annealing” (SA) method and
then proceed to the overrelaxation (OR) algorithm.
SA is used for preliminary maximization of Fsk(g),
the OR algorithm is more efficient at the final stage.



The SA algorithm generates gauge transformations g(x) by
MC iterations with a statistical weight proportional to
exp (4V Fsk [G]/T ) . T is an auxiliary parameter which is
gradually decreased to maximize Fsk [g] .
[Bogolubsky et al., 2007; Schemel et al., 2006]: Tinit = 1.3,
Tfinal = 0.01 After each quasi-equilibrium sweep, including both
heatbath and microcanonical updates, T is decreased by
equal intervals. The final SA temperature is fixed such that the
quantity

max
x, a

∣

∣

∣

3
∑

µ=1

(

Aa
x+µ̂/2;µ − Aa

x−µ̂/2;µ

) ∣

∣

∣
(9)

decreases monotonously during OR for the majority of gauge
fixing trials. The number of the SA steps is set equal to 3000.



We use the standard Los-Alamos type overrelaxation
with the parameter value ω = 1.7.
The number of iterations:
500 ÷ 700 at L = 32 1500 ÷ 3000 at L = 80;
in few cases, several times greater.

The precision of gauge fixing:

max
x, a

∣

∣

∣

3
∑

µ=1

(

Aa
x+µ̂/2;µ − Aa

x−µ̂/2;µ

) ∣

∣

∣
< 10−7 (10)

The configuration V̄sk with the greatest value of Fsk [g] is
referred to as “the k th Gribov copy in the sth sector”.



◮ We put the configurations V̄sk in the linear order: V̄sk → V̄r .
There are two natural arrangements:

V̄(1)
r = Vsk , where r = Ncopy(s − 1) + k ; (11)

V̄(2)
r = Vsk (j), where r = 8(k − 1) + s; (12)

r runs from 1 to N tot
copy = 8Ncopy .

◮ Now we can take a part Pn of the residual gauge orbit
R(U0) consisting of n elements, 1 ≤ n ≤ N tot

copy .

◮ Let F [V̄r ] approaches its maximum on Pn at V̄r̄ .



◮ We evaluate (measure) the value of the propagator using
V̄r̄ .

◮ We repeat this procedure Nmeas times;
the initial configuration U0(j) for each measurement
being separated by 200 sweeps from the previous one
in order to be considered as statistically independent.

◮ Then we take an average over the measurements.



L Nmeas Ncopy aL [Fm] Fmax

32 800 16 5.38 0.9192939± 0.0000173
40 400 20 6.73 0.9193018± 0.0000177
48 905 20 8.08 0.9193386± 0.0000091
56 788 20 9.43 0.9193515± 0.0000080
64 474 20 10.8 0.9193404± 0.0000078
72 578 35 12.1 0.9193656± 0.0000065
80 557 20 13.5 0.9193527± 0.0000055

Table: a
√

σ ≈ 0.567,
√

σ = 440 MeV; a = 0.168 Fm ∼ (1.17 GeV)−1;
1 GeV−1 ≃ 0.197 Fm.
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However, to study the infrared asymptotics more precisely, we
should consider the infinite-volume limit. To take an example,
D(0) versus L = Na
Taking Gribov copies into account results in a substantial
decrease of D(0), D(pmin), D(2pmin). An analysis performed on
a finite lattice with the neglect of such decrease may lead to
erroneous conclusions on infrared behavior of the gluon
propagator.
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It is considered [Zwanziger, 1999] that, in the infinite-volume
limit, Gribov copies have no effect on the gluon propagator.
This statement can now be formulated more precisely:

◮ For a fixed physical momentum (p 6= 0)
GL(p) → 0 as L → ∞

◮ For p = 0, p = pmin =
2πa

L
, p = 2pmin, ..., p = tpmin

the effect of Gribov copies (measured by GL(p)) exists
and ranges up to 0.25 for p = 0.
However, it decreases exponentially with t .
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The scaling solution D(p) ≃ (p2) characterized by D(0) = 0
is not excluded in the absolute Landau gauge.
In agreement with Maas, 2008

In the minimal Landau gauge it is excluded
[Maas 2008; Cucchieri, Mendes et al. 2003-2010]


