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QCD

and its phase diagram

need to understand confinement and chiral symmetry breaking

but also deconfinement and chiral symmetry restoration
at finite temperature and/or density
⇒ new phases of matter
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β . . . Eucl. and compact, β ≡ 1/T

both effects related? Dual quantities

generic? Random Matrix Theory
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Theory challenge: Deconfinement

Polyakov loop: P(~x) = P exp
(
i
∫ β

0 dx0A0(x0, ~x)
)
∈ SU(3)

〈trP〉~x in complex plane [one point per configuration]
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order parameter like magnetization, but inverse behavior

free energy of infinitely heavy quarks

〈trP〉 ∼ e−βFquark =

{
e−∞ = 0 T < Tc
e−# 6= 0 T > Tc

breaks center symmetry
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Theory challenge: Chiral symmetry restoration

spectral density ρ(λ) of the Dirac operator:
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order parameter of chiral symmetry: ρ(0) ∼ 〈ψ̄ψ〉 Banks-Casher

i.e. for massless quarks [mass breaks chiral symmetry explicitly]

Confinement and chiral symmetry related? Dual quantities
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Dual quantities: idea and definition

lattice: gauge invariant quantities
 link products along closed loops

plaquettes
(→ action)

how to distinguish these classes of loops?

⇒ phase factor eiϕ multiplying U0 at fixed x0-slice
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' quarks with general boundary conditions Gattringer ’06

ψ(x0 + β) = eiϕψ(x0)

physical quarks are antiperiodic: ϕ = π

general quark propagator: cf. Synatschke, Wipf, Wozar, ’07

1
γµDµ

ϕ + m

(physical) chiral condensate:

ρ(0) = 〈ψ̄ψ〉 = lim
m→0

lim
V→∞

1
V

〈
tr

1
γµDµ

ϕ=π + m

〉
≡ Σϕ=π

dual condensate: Bilgici, FB, Gattringer, Hagen ’08

Σ̃1 ≡
1

2π

∫ 2π

0
dϕ e−iϕ 1

V

〈
tr

1
γµDµ

ϕ + m

〉
Fourier component picks out all contributions that wind once

≡ dressed Polyakov loop: chiral symmetry connected to confinement
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Dual quantities and center symmetry

center: commutes with all group elements
for SU(3): {1,e2πi/3 ≡ z,e−2πi/3 ≡ z∗} · 13

center transformation: non-periodic gauge transformation, e.g.
U0 → zU0 in some time slice

invariance: action invariant, Polyakov loop: trP → z trP

center symmetric = confined phase:

trP = 0 at low T

center broken = deconfined phase:

trP ≈ {1, z, z∗} 6= 0 at high T [transform into each other]

dual quantities like dual condensate Σ̃1:

same behaviour under center: Σ̃1 → z Σ̃1 Synatschke, Wipf, Langfeld ’08
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Dual condensate: order parameter I

SU(3) quenched: Bilgici, FB, Gattringer, Hagen ’08

(bare) Σ̃1 with m = 100MeV
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less renormalisation← detours = dressing
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Dual condensate: order parameter II

SU(3) with dynamical fermions: FB, Fodor, Gattringer, Szabo, Zhang preliminary

Nf = 2 + 1 staggered fermions at phys. masses Aoki et al. ’06

⇒ crossover with T 〈ψ̄ψ〉c = 155(2)(3)MeV and TPc = 170(4)(3)MeV

(bare) Σ̃1 with m = 60MeV
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similar behaviour (center symmetry not an exact symmetry anymore)
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Dual condensate: mechanism I

Σ̃1 =
1

2π

∫ 2π

0
dϕ e−iϕ · 1

V

〈
tr

1
γµDµ

ϕ + m

〉
Fourier integrand 〈...〉 as a function of ϕ: Bilgici, FB, Gattringer, Hagen ’08
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[for real Polyakov loops, others shift plot by 2π/3]

⇒ depends on ϕ only at high temperatures⇒ Σ̃1 6= 0 X
in particular: chiral condensate survives at high T for periodic bc.s
dummy several lattice works
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Dual condensate: mechanism II
tr means sum over all eigenmodes:

Σ̃1 ≡
∫ 2π

0

dϕ
2π

e−iϕ 1
V

〈
tr

1
γµDµ

ϕ + m

〉
=

∫ 2π

0

dφ
2π

e−iϕ 1
V

〈∑
k

1
iλk
ϕ + m

〉
truncate the ev sum: IR dominance Bilgici, FB, Gattringer, Hagen ’08
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expected: λ in denominator, lowest modes most sensitive to bc.s
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Summary so far

the dual condensate Σ̃1 is an order parameter under center symmetry

Σ̃1 = 0 at low T ← similar to the Polyakov loop
Σ̃1 > 0 at low T
limit of large mass: detours suppressed⇒ conventional (straight)
Polyakov loop
limit of small mass: Fourier component of chiral condensate wrt.
fermionic boundary conditions

mechanism: lowest modes respond to boundary conditions at high T
[boundary angle ' imag. chemical potential, but only at the level of
observables, not for dynamical quarks]

relax . . . change subject! Bogoliubov

How generic are these features? Random Matrix Theory
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Random matrix theory in a nutshell

≡ replace dynamics of a given physical system by random matrices
(“0-dim. field theory”) with the correct symmetry

showcase: distribution of (neighbouring) level spacings s = ∆λ

P(s) =

∫
dX exp(−trXX †) prob.(s)X

where X is N × N and
{ real

complex
quaternionic

≡ Gaussian
{Orthogonal

Unitary
Symplectic

}
Ensemble← different anti-unitary symm.s

Dyson index βD =
{ 1

2
4

}
∼ number of real d.o.f.
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P(s) for large matrices, βD =1, 2, 4:
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⇒ typical eigenvalue repulsion depending on ensemble

well described by 2×2 matrices: Wigner

P(s) ∼ sβD e−#s2


 independent eigenvalues: P(s) ∼ e−s
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Random matrix theory for QCD

random entries of the Dirac operator:

ev.s(X )→ ev.s
(

m iX
iX † m

)

mimics γ’s in chiral representation: ‘chiral ensembles’, same P(s)
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)

s

lattice vs. chGUE prediction (βD = 2)

Pullirsch, Rabitsch, Wettig, Markum ’98

universal ‘bulk’ property, exact in ε-regime . . .
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Random matrix theory for QCD at finite T

quarks are antiperiodic in x0 ∈ [0, β]

⇒ Dirac eigenvalues shifted by Matsubara frequencies

πT + 2πnT

(exact in free case: waves with certain frequencies)

Random matrix model: Jackson, Verbaarschot ’96

Z =

∫
dXN×N exp(−NC2trXX †) det

(
m iX + iπT · 1N

iX † + iπT · 1N m

)

lowest Matsubara frequency as non-random trace part

schematic (crit. exponents like mean field)

model parameter: C
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numerical simulations: ρ(λ) from 500 30× 30 matrices
T = 0
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semicircle of width ∼ 1/C, shift ±T ⇒ ρ(0) vanishes for high T

saddle point method:
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vanishes above Tc ≡ 1
πC

chiral phase transition, 2nd order

⇒ chiral condensate ρ(0) ∼ 〈ψ̄ψ〉 and its absence at high T “generic”
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Random matrix theory for dual condensate

general bc.s ϕ⇒modified Matsubara frequencies FB in preparation

ωϕ ≡ min
n
|(ϕ+ 2πn)T | =

{
ϕT ϕ ∈ [0, π]
(2π − ϕ)T ϕ ∈ [π,2π]

ωπ = πT as before, for other boundary conditions less shifted ...

saddle point similar to before:

ρ(0)ϕ = Σϕ = C
√

1− (T/Tc,ϕ)2

with

Tc,ϕ ≡

{
1
ϕC ϕ ∈ [0, π]

1
(2π−ϕ)C ϕ ∈ [π,2π]

... hence survives up to higher critical temperature, Tc,0 =∞
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chiral condensate with general bc.s:
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changes at the chiral phase transition
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Summary

the chiral condensate and the chiral phase transition at high T can
easily be obtained in Random matrix theory: are ‘generic’ X

the boundary condition can be incorporated in RMT by virtue of
Matsubara frequencies

the chiral condensate as a function of the boundary angle agrees
qualitatively with results from lattice, functional methods and QCD
modelsdummy Fischer, Müller ’09, Braun et al. ’09, Kashiwa, Kouno, Yahiro ’09, . . .

the dual condensate Σ̃1 shows a phase transition at the chiral Tc
[but no exact center symmetry . . . ]

deconfinement transition ‘generic’ and near the chiral transition
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Relevant excitations!?

calorons ≡ class. solns. of Yang-Mills (instantons) at finite temperature
dummy Harrington, Shepard ’78; Kraan, van Baal; Lee, Lu ’98

topological (action) density for
total charge Q = 1 in SU(3)

substructure: Nc constituents = magn. monopoles/dyons
masses governed by asymptotic Polyakov loop

P∞ = lim
|~x |→∞

P(~x) . . . holonomy

conjecture: holonomy tr P∞ � order parameter 〈 tr P 〉
⇒ dyon masses sensitive to the phase of QCD
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dyon masses sensitive to the phase of QCD, in SU(2) with 2 dyons:

confined phase

equal mass constituent dyons

deconfined phase

heavy + light constituent dyon

fermionic zero modes: ψϕ'0 at light dyon, ψϕ'π at heavy dyon
make up condensates in a caloron gas model

mechanism above Tc : heavy dyons suppressed FB ’09

⇒ 〈ψ̄ψ〉ϕ'π suppressed, 〈ψ̄ψ〉ϕ'0 stays X Bornyakov et al. ’09

⇒ top. susceptibility suppressed X
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