Large-N Quanturn Field Theories
and Nonlinear Panclonn Processes

$$
\text { [AI; }\{i v: 1009,4033]
$$

Pavel Buividovich
(ITEP, Moscow and JINR, Dubna)

Bogoliubov readings, Dubna, 23.09.2010

Motivation

Problems for modern Lattice QCD simulations(based

 on standard Monte-Carlo):, Sign problem (finite chemical potential, fermions etc.)
in o Finite-volume effects
Difficult analysis of excited states
3 Critical slowing-down

- Large-N extrapolation (AdS/CFT, AdS/QCD)

Look for alternative numerical algorithms

Motivation: Diag gramnenatic MIC, Worm Algorichirn, ...

, Standard Monte-Carlo: directly evaluate the path integral

$$
\mathcal{Z}=\int \mathcal{D} \phi(x) \exp (-S[\phi(x)])
$$

- Diagrammatic Monit-Carlo: stochastically sum all the terms in the perturbative expansion

$$
\begin{gathered}
\mathcal{Z}=\int \mathcal{D} \phi(x) \exp (-S[\phi(x)])= \\
\int \mathcal{D} \phi(x) \exp \left(-S_{0}[\phi(x)]\right) \sum_{k}(\delta S[\phi(x)])^{k} / k!
\end{gathered}
$$

Motivation: Diacifarnmatic MC, Worm Algiorithirn, ...

, Worm Algorithm [Prokof'ev, Svistunov]:
Directly sample Green functions, Dedicated sifnulaicions!!!

Example:

Ising riodel
$\left\langle\sigma_{x} \sigma_{y}\right\rangle \sim p(x, y)$

x, y - head and tail
of the worm
Applications:

- Discrete sy/rsinsetry groups a-la Ising [Prokof'ev, Svistunov]
$0 O(N) / C P(N)$ Iatice theories [Wolff] - difficult and limited

Extension to ? CD?

And other quantum field theories with conitinuous symmetry groups ...
Typical problems:

- Nonconvergence of perturbative expansion (noncompact variables)
- Compact variables (SU(N), O(N), CP(N-1) etc.): finite convergence radius for strong coupling
- Algorithm complexity grows with N
- Weak-coupling expansion (=lattice perturbation theory): complicated, volume-dependent...

Large-N Quajsitursi Fielcl 「'rieories

Situlation might be better ait larcle $N . .$.

- Sums over PLANAR DIAGRAMS typically converge at weak coupling
- Large-N theories are quite nontrivial confinement, asymptotic freedom, ...
- Interesting for AdS/CFT, quantum gravity, AdS/condmat ...

Main results to be preserjied:

- Stochastic summation over planar graphs: a general "genetic" random processes
> Noncompact Variables
> Itzykson-Zuber integrals
> Weingarten model = Random surfaces
- Stochastic resummation of divergent series: random processes with memory
$>\mathrm{O}(\mathrm{N})$ sigma-model
> outlook: non-Abelian large-N theories

Schwinger-Dysorı equalitions at large N

, Example: φ^{4} theory, φ - hermitian N,N matrix

- Action:

$$
S[\phi]=N \operatorname{Tr} \phi(x)\left(m^{2}-\Delta\right) \phi(x)-\frac{N \lambda}{4} \operatorname{Tr} \phi^{4}(x)
$$

, Observables = Green functions (Factorization!!!):

$$
\begin{gathered}
w\left(k_{1}, \ldots, k_{n}\right)=\mathcal{N} c^{n-1} G\left(k_{1}, \ldots, k_{n}\right)= \\
\int d^{4} x_{1} \ldots d^{4} x_{n} \exp \left(i k_{A} \cdot x_{A}\right)\left\langle\frac{1}{N} \operatorname{Tr}\left(\phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)\right)\right\rangle
\end{gathered}
$$

- N, c - "reniormalization constants"

Schwinger-Dysons equuations air large N

, Closed equ|uations for w($\left.k_{1}, \ldots, k_{n}\right)$:

$$
\begin{gathered}
w\left(k_{1}, \ldots, k_{n}\right)= \\
G_{0}\left(k_{1}\right) \mathcal{N} c^{-4} \sum_{A=3}^{n-1} w\left(k_{2}, \ldots, k_{A-1}\right) w\left(k_{A+1}, \ldots, k_{n}\right) \frac{\delta\left(k_{1}+k_{A}\right)}{V}+ \\
G_{0}\left(k_{1}\right) c^{-2} \delta\left(k_{1}+k_{2}\right) w\left(k_{3}, \ldots, k_{n}\right)+ \\
G_{0}\left(k_{1}\right) \lambda c^{2} \sum_{q_{1}, q_{2}, q_{3}}^{G_{0}\left(k_{1}\right) c^{-2} \delta\left(k_{1}-q_{1}+q_{1}-k_{n}\right) w\left(k_{2}, \ldots, q_{3}\right) w\left(q_{1}, q_{2}, q_{3}, k_{2}, \ldots, k_{n}\right)}
\end{gathered}
$$

- Always $2^{\text {nd }}$ order equations!
- Infinitely many unknowns, but simpler than at finite \mathbf{N}
- Efficient numerical solution? Stochastic!
- Importance sampling: $w\left(k_{1,}, \ldots, k_{n}\right)$ - probability

Schwinger-Dysons equuationss ar large N

"Genetic" Parsdors Process

Also: Recursive Markov Chain [Etessami, Yannakakis, 2005]

- Let X be some discrete set
- Consider stack of the elements of X

Top - At each process step:

Otherwise restart!!!

$>$ Create: with probability $P_{c}(x)$ create new x and push it to stack
$>$ Evolve: with probability $P_{e}(x \mid y)$ replace y on the top of the stack with x

Top
$>$ Meroe: with probability $P_{m}\left(x \mid y_{1,}, y_{2}\right)$ pop two elements $\mathrm{y}_{1,}, \mathrm{y}_{2}$ from the stack and push x into the stack

"Genetic" Pandorsi Process:

Steady State andid Propalgation of C'naos

- Probability to find n elements $x_{1} \ldots x_{n}$ in the stack:

$$
W\left(x_{1}, \ldots, x_{n}\right)
$$

- Propagation of chaos [McKean, 1966] (= factorization at large-N [tHooft, Witten, 197x]):

$$
W\left(x_{1}, \ldots, x_{n}\right)=w_{0}\left(x_{1}\right) w\left(x_{2}\right) \ldots w\left(x_{n}\right)
$$

- Steady-state equation (sum over y, z):

$$
w(x)=P_{c}(x)+P_{e}(x \mid y) w(y)+P_{m}(x \mid y, z) w(y) w(z)
$$

"Genetic" Rariclorri Process arid Schwinger-Dysori equuacions

- Let $X=$ set of all sequences $\left\{k_{1}, \ldots, k_{n}\right\}, k$ - momenta
- Steady state equation for "Genetic" Random Process = Schwinger-Dyson equations, IF:
- Create: push a pair $\{\mathrm{k},-\mathrm{k}\}, \mathrm{P} \sim \mathrm{G}_{0}(\mathrm{k})$
- Merce: pop two sequences and merge them
- Evolve:
> add a pair $\{k,-k\}, \mathrm{P} \sim \mathrm{GO}(\mathrm{k})$
$>$ sum up three momenta on top of the stack, $\mathrm{P} \sim \lambda \mathrm{G}_{0}(\mathrm{k})$

Examples: drawing diag cirams

Only planar diagrams are drawn in this wayll!

Examples: is (15 Marisis Model

$$
\begin{gathered}
I_{\mathrm{k}}=\mathcal{Z}^{-1} \int \mathcal{D} X \frac{1}{N} \operatorname{Tr} X^{2 k} \exp (-N S[X]), \\
S[X]=\operatorname{Tr} X^{2}-g \operatorname{Tr} X^{4}
\end{gathered}
$$

Exact answer Hriowni[Brezin, Itzykson, Zuber]

Examples: is $\left(\nu^{4}\right.$ MaitriK: Model

- Autocorrelation time vs. coupling:

No critical slowing-down

- Peculiar: only $\mathrm{g}<3 / 4 \mathrm{~g}_{\mathrm{C}}$ can be reached!!! Not a dynamical, but an algorithmic limitation...

Examples: is $\left(\nu^{4}\right.$ MaitriK Model

Sign problem vs. coupling: No severe sign problem!!!

Examples: Wyeirscariens sriodel

Weak-coupling expansion = sum over bosonic random surfaces [Weingarten, 1980]
Complex NxN matrices on laticice links:

$$
\mathcal{Z}=\int \mathcal{D} \cup(x, \mu)
$$

$$
\exp \left(-N \sum_{x, \mu} \operatorname{Tr} U(x, \mu) U^{\dagger}(x, \mu)+N \beta \sum_{p} U(p)\right)
$$

"Genetic" random process:

- Stack of loops!
- Basic steps:
> Join loops
> Remove plaquette

Loop equations:

Examples: W/eisicarisiers ssiodel

Ranclomly evolving loops sweep out all possible surfíaces wifith spherical topology

"Genetic" random

process:

- Stack of loops!
- Basic steps:
> Join loops
> Remove plaquette

The process mostly produces "spiky" loops = random walks

Noncritical string theory degenerates into scalar particle [Polyakov 1980]

Examples: Wyeinglariers sriodel Critical index ys. dimension

Peak around $D=23$, close to $D_{c}=26!!!$

Some historical semarks

"Genetic" algorithrn vs, branching randorn process

Some historical remarls

"Genetic" algorithm Vs, branching randorn process原
 Probability to find

* some configuration
of branches obeys nonlinear equation

Steady state due to creation and merging

Recursive Markov Chains
[Etessami, Yannakakis, 2005] "Loop extinction":
No importance sampling
Also some modification of McKean-Vlasov-Kac models [McKean, Vlasov, Kac, 196x]

Compact varialyles? (QCD, CP(N),

- Schwinger-Dyson equations: still quadratic
- Problem: alternating signs!!!
- Convergence only at strong coupling
- Weak coupling is most interesting...

Example: $O(N)$ sigmia model on the lattice

$$
\mathcal{Z}=\int_{|n(x)|=1} \mathcal{D} n(x) \exp \left(\frac{N}{\lambda} \sum_{<x y\rangle} n(x) \cdot n(y)\right)
$$

G'bservables:

$$
\xi(x, y)=\langle n(x) \cdot n(y)\rangle, \quad \xi(x) \equiv \xi(x, 0)
$$

O(N) o-rriodel: Scriwyinger-Dyson

Schwinger-Dyson equuations:

$$
\xi(x)=\lambda^{-1} \sum_{\mu} \xi\left(x \pm \boldsymbol{e}_{\mu}\right)-\lambda^{-1} \sum_{\mu} \xi(x) \xi\left(\pm \boldsymbol{e}_{\mu}\right)+\delta(x)
$$

Strong-coupling expansion does NOT converge !!!
Rewrite as:

$$
\xi(x)=\frac{1}{\lambda+\sum_{\mu} \xi\left(\pm e_{\mu}\right)} \sum_{\mu} \xi\left(x \pm e_{\mu}\right)+\frac{\lambda}{\lambda+\sum_{\mu} \xi\left(\pm \boldsymbol{e}_{\mu}\right)} \delta(x)
$$

Now define a "probability" $W(x) ; \xi(x)=c w(x), \sum_{x} w(x)=1$

$O(\mathbb{N})$ o-rnodel: ramidors walk

 Intioduce the "hopping parameter":$$
\kappa=\frac{1}{\lambda+\sum_{\mu} \xi\left(\pm e_{\mu}\right)}=\frac{1}{2 D+\lambda w(0)}
$$

Schwinger-Dyson equations

= Steady-state equation for Bosonic Random Walk:

$$
\xi(x)=\frac{1}{\lambda+\sum_{\mu} \xi\left(\pm \boldsymbol{e}_{\mu}\right)} \sum_{\mu} \xi\left(x \pm \boldsymbol{e}_{\mu}\right)+\frac{\lambda}{\lambda+\sum_{\mu} \xi\left(\pm \boldsymbol{e}_{\mu}\right)} \delta(x)
$$

$$
w(x)=\kappa \sum_{\mu} w\left(x \pm e_{\mu}\right)+(1-2 D \kappa) \delta(x)
$$

Randorrs wallis witith sressiory

"hopping parameter" depends on the return probability w(0):

$$
\kappa=\frac{1}{\lambda+\sum_{\mu} \xi\left(\pm \boldsymbol{e}_{\mu}\right)}=\frac{1}{2 D+\lambda W(0)}
$$

Iterative solution:

- Start with some initial hopping parameter
- Estimate w(0) from previous history \quad memory
- Alqorithm A: continuously update hopping parameter and w(0)
- Algorithm B: iterations

$$
\kappa_{i+1}=\frac{1}{2 D+\lambda w\left(0 ; \kappa_{i}\right)}
$$

Random walks witich mersiory:

 converglence

Random walks witich mersiory:

 asymptotic freeclors is 2D

Random walks witich mersiory: condensates arid feriorrialons

- $\mathrm{O}(\mathrm{N})$ o-model at large N : divergent strong coupling expansion
- Absorb divergence into a redefined expansion parameter
- Similar to renormalons [Parisi, Zakharov, ...]

Nice convergent expansion

$$
\kappa=\frac{1}{\lambda+\sum_{\mu}\left\langle n(0) \cdot n\left(\pm e_{\mu}\right)\right\rangle}
$$

- <n(0) $\cdot \mathrm{n}(+/-\mathrm{e} \mu)>-$ "Condensate"
- Non-analytic dependence on λ
- O(N) o-model = Random Walk in its own "condensate"

Outlook: Jarge-N clauge theory

- $|n(x)|=1=$
"Ziazaq symmetry"

- Self-consistent condensates = Lagrange multipliers for "Zigzag symmetry" [Kazakov 93]: "String project in multicolor QCD", ArXiv:hep-th/9308135
\square "QCD String" in its own condensate???
- AdS/OCD: String in its own gravitation field
- AdS: "Zigzag symmetry" at the boundary [Gubser, Klebanov, Polyakov 98], ArXiv:hep-th/9802109

Summary

- Stochastic summation of planar diagrams at large N is possible

Random process of "Genetic" type

- Useful also for Random Surfaces
- Divergent expansions: absorb divergences into redefined self-consistent expansion parameters
- Solving for self-consistency

Random process with memory

