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Black Hole formation in TeVBlack Hole formation in TeV--scale gravityscale gravity

Pictures by Sabine Hossenfelder

In large extra dimension models
• Gravity stronger at small distances
• Horizon radius larger
• For M ~ TeV it increases from 10-38 fm to 10-4 fm 
For these BH Rh<< R and they have approximately higher dimensional spherical
symmetry  

At the LHC partons can come closer than their Schwarzschild horizon

black hole production
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Evolution stages for BH

II-III. Hawking radiation phases (short spindown +
more longer Schwarzschild)
Quantum-mechanical decay trough tunneling, transition 
from Kerr spinning BH to stationary Schwarzschild one.  
angular momentum shedding (up to ~ 50% mass loss). 
Corrections with Gray Body Factors
After this – thermal decay to all SM particles with black
body energy spectra. Accelerating decay with a varying 
growing temperature. No flavor dependence, only number
of D.o.f.– “democratic” decay  

IV. Planck phase: final explosion (subj for QGr)
BH remnant (non-detectable energy losses), N-body
decay, Q, B, color are conserved or not conserved

I.  Balding phase
Asymmetric production, but “No hair” theorem: BH sheds 
its high multipole moments for fields (graviton and GB 
emitting classically), as electric charge and color.
Characteristic time is about t ~ RS
Result: BH are classically stable objects
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BH production in pp collisions: some wellBH production in pp collisions: some well--known formulasknown formulas

Schwarzschild raduis of a 
multidimensional BH
(R.C. Myers and M.J. Perry, Ann. Phys. 172, 
304, 1986)

BH production cross section
(S. Dimopoulos, G. Landsberg, 
Phys.Rev.Lett.87:161602, 2001
hep-ph/0106295v1)
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BH Production in pp collisions at the LHCBH Production in pp collisions at the LHC

Increasing cross section, no suppression
from small couplings
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Hawking evaporation of BHHawking evaporation of BH

Hawking temperature
(R.C. Myers and M.J. Perry, 
Ann. Phys. 172, 304, 1986)

where

Multiplicity of produced particles in BH decay
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Grey Body Factors for BH DecayGrey Body Factors for BH Decay
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Papers on GBF:

P. Kanti, J. March-Russell, I. Olasagasti K. Tamvakis, 2002;
G. Duffy, C. Harris, P. Kanti and E. Winstanley, 2005;
M. Casals, P. Kanti and E. Winstanley, S. R. Dolan, 2006-2007
D. Ida, K.-y. Oda and S. C. Park, 2003-2006
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BH production in pp collisions at the LHCBH production in pp collisions at the LHC
DL ‘01

For the LHC energies: 

a) Parton-level production
cross section

b) Differential cross section

c) Hawking temperature

d) Average decay multiplicity
for Schwarzschild BH

n=4

(S. Dimopoulos, G. Landsberg, Phys.Rev.Lett.87:161602, 2001, hep-ph/0106295v1)
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Entropy, BH decay and Entropy, BH decay and MMminmin(BH(BH))
BH Entropy

Democratic decay blinded to flavor: 
probabilities are the same for all species 
(violation of some conservation laws) 

SBH must be large enough to 
reproduce thermal BH decay
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# # D.o.fD.o.f. counting and . counting and ““democracydemocracy”” of decayof decay
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Black Hole or String Ball?Black Hole or String Ball?

MBH >> MD : semiclassical well-known description for BH’s.

What happens when MBH approach MD?
BH becomes “stringy”, their properties become complex. 

2min
ssBH gMM = 22 )()(

ssBHssSB gMMgMM
BHSB

==
= σσ

Matching:

Picture by Kingman Cheung

S. Dimopoulos and R. Emparan, Phys. Lett. B526, 393 (2002), hep-ph/0108060
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Production cross section for BH, SB and pProduction cross section for BH, SB and p--branebrane

K. Cheung, PR D66, 036007 (2002), hep-ph/0305003
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Final state of the SM process Final state of the SM process vsvs typical BH decay typical BH decay 
spectraspectra

Multi-jet and hard leptons events, spherical, typical temperature about 200 GeV

Pictures by Sabine Hossenfelder

SM BH decay
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BH Experimental SignaturesBH Experimental Signatures

• Potentially large cross sections, approaching 103 fm or more

• An increase of cross sections with energy, according to an absense of gauge 
coupling suppression (will be hard to see at the LHC)

• Relatively high sphericity for final states

• High multiplicity as proportional to the BH entropy of particles produced 
(primaries) 

• Hard trasverse leptons and jets, in significant numbers

• Approximately thermally determined ratios of species (democratic decay)

• Suppression of highest-energy jets

• Decrease of decay primary (lepton/parton) energy with total event transverse
energy (resulting from decreasing Hawking temperature with mass) 
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Part II. Optimism Is fadingPart II. Optimism Is fading……

BH not as spectacular as advertized!!

• BH Production near the threshold and careful counting

• Conventions on a fundamental mass 

• Inelasticity for BH formation at the LHC and in the UHECR

• Minimal M for a sensible definition of a BH 

• LHC unlikely to make classical BH with thermal decay spectra.
So, what can we see, then?

• Two-body final states and QG

…… but it is not the end of the storybut it is not the end of the story
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Conventions on a fundamental mass Conventions on a fundamental mass 

D=6

D=10

DLp MM 3.1=

DLp MM 9.2=

At least three definitions:

Just numerical coefficients

But: there is essential difference
between M about 1 TeV and 2 TeV 
for the LHC!

Lgxdgxd
G

S DD

D
∫∫ −+ℜ−=

2
1

8
1

π

D

D
D
P G

M
π
π

4
)2( 4

2
−

− =

D

D
D
D G

M
π
π

8
)2( 4

2
−

− =

D

D

G
M 12

DL =− 2
DL

562 2 −−−− = DDDD
P MM π

D
D

P MM 2
1

2 −=



1818

At what energy can we safely speak about At what energy can we safely speak about ““truetrue”” BH BH 
production?production?

Clearly E > MD. But how much large?

From the talk by Lisa Randall at String’2007
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Inelasticity in BH production and Inelasticity in BH production and XXminmin

What part of initial collision energy actually was trapped in BH formation 
process?

inelasticity (pp → BH + X) – function of n,b
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J. A. Frost, J. R. Gaunt, M. O.P. Sampaio, M. Casals, S. R. Dolan, M. A. Parker, and B. R. Webber,
arXiv:0904.0979

Mass loss during BH formation in different models
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Inelasticity by TSM and predictions for the LHC 

L.A. Anchordoqui, J.L. Feng, H. Goldberg, A.D. Shapere, Phys.Lett. B594 (2004), hep-ph/0311365
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BH production in UHECR 
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BH Production in UHECRBH Production in UHECR

n=1-7, 5 Yrs.

Pierre-Auger Observatory

n=6
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The discovery reaches for the LHCThe discovery reaches for the LHC

This region tested by PAO 5 Years (not excluded hardly)

n=6

L.A. Anchordoqui, J.L. Feng, H. Goldberg, A.D. Shapere, Phys.Lett. B594 (2004), hep-ph/0311365

PAO didn’t see BH
pruduction in HAS.

It means what PAO didn’t 
see the signal in HAS

- Suppression of ν fluxes 
in ED 
B conservation in νp

We need wait for the LHC!
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Simulation of BH production and decay: event generators 
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CHARYBDIS 1.003 (August 2006) 
C.M. Harris, P. Richardson and B.R. Webber
“CHARYBDIS: A Black Hole Event Generator”, JHEP 0308:033, hep-ph/0307305, 2003

http://www.ippp.dur.ac.uk/montecarlo/leshouches/generators/charybdis/

CHARYBDIS2 (April 2009)
J. A. Frost, J. R. Gaunt, M. O.P. Sampaio, M. Casals, S. R. Dolan, M. A. Parker, and B. R. 
Webber, arXiv:0904.0979

http://projects.hepforge.org/charybdis2/

CATFISH 1.1 (October 2006), 
M. Cavaglia, R. Godang, L. Cremaldi and D. Summers, “CATFISH:
A Monte Carlo simulator for black holes at the LHC", arXiv: hep-ph/0609001

http://www.phy.olemiss.edu/GR/catfish/catfish-v1.01.docu.pdf

BlackMax (April 2008, the latest version – March 2010)
De-Chang Dai, G. Starkman, D. Stojkovic, C. Issever, E. Rizvi, J. Tseng
“BlackMax: A black-hole event generator with rotation, recoil, split branes and brane tension”,
Phys.Rev. D77:076007, 2008, arXiv:0711.3012v4

http://projects.hepforge.org/blackmax/

Black Hole Event Generators
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CHARYBDIS1 Gen.: Analysis and results for the CMS CHARYBDIS1 Gen.: Analysis and results for the CMS 

M_rec Sphericity

CMS PTDR Vol. II, 2007 

Hard jets, leptons and γ’s

L = 30 fb-1

As a benchmark:
2 TeV/c2 fundamental Planck scale
4 TeV/c2 – 14 TeV/c2 BH mass
n=3 number of ED
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Total vs visible energy of decay products

Sqrt(s)=14 TeV,
n=6, M=1 TeV,
MBH=5 TeV

Cut on eta:
|η|<3

can be applied

M. Savina, V. Konoplianikov ’2010

all only
visible

all only
visible
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Invariant mass of decay products (visible only + kin. cuts + acceptance)

M. Savina, V. Konoplianikov ’2010

BH 
gen

BH 
gen
+

acc.

invisible
excl.

invisible
excl.

+
rec.

Sqrt(s) = 14 TeV,
n = 6, M =1 TeV,
MBH = 5 TeV
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Invisible energy (from neutrinos and gravitons), in percents of total energy, 
Charybdis2

M. Savina, V. Konoplianikov ’2010
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M = 1 TeV
MBH > 5 TeV

M = 2 TeV
MBH > 10 TeV

M = 1 TeV
MBH > 10 TeV

M = 1 TeV
MBH > 7 TeV

Charybdis2: S&B Sphericity for different fundamental scales and Xmin

M. Savina, V. Konoplianikov ’2010



3232

CatFish (red) vs Charybdis (blue)

M. Savina, V. Konoplianikov ’2010
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Charybdis2: S12 vs minimal visible mass, for different M def.

M. Savina, V. Konoplianikov ’2010
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Charybdis2: S12 vs Planck mass, for different M def.

M. Savina, V. Konoplianikov ’2010
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Charybdis2: number of partons in BH events
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Resume (not hard and final, because too many calculations and theoretical
Investigation are waiting to be done in this field)

• Black Holes is not a such spectacular signature as commonly advertized
earlier (from the very first papers in 1998).

• Likely the LHC will not be able to observe classical thermal BH decays. 

• Careful counting pushes the minimal value of BH mass to higher energies what 
make observation of BH hopeless at the LHC 
(important moment: there are alternative point of views on this problem,
not just one possible). 

• In any case for TeV scale gravity near the threshold we will see 
signatures of QG (if one of them are realized by Nature). 

• We can’t calculate its and make quantitative prediction. But
these signatures can be distinguished from other possible new physics (by high 
transversality for final states).  


