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Preliminaries

Quantum Gravity — Great Puzzle — numerous approaches:

including torsion, Weyl fields, non-metriicty

Canonical gravity approach

Loop gravity

Spin foam models

Super-gravity, -strings, M-theory
Extra-dimensions, brane worlds
Non-commutative geometry

Analogous models in condensed matter physics

Gravitation is manifestation of geometry and it does not exist as a
fundamental force atall ~ ----- an extreme viewpoint



I. Vacuum tunneling in Einstein gravity

Definitions of vacuum:
I A=0: Ry=0—>0; =7, flat space-time

1
2. A#0: Rij _E Rgij + Agij =0— 9; = 0 (1) an absolute vacuum
\L Fubini-Study instanton CP?
(11) Any static vacuum solution describes vacuum-vacuum transition

0., — 0 whent — too

3. ADO: x=3, t=1

this type of vacuum metrics corresponds to
asymptotically locally Euclidean instantons (ALE)



On Fubini-Study instanton on CP?
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2a An analog to BPST instanton

The anti-instanton is given by the same metric
but with opposite orientation of the space-time, i.e. with inversed vielbein



Topological structure of the vacuum: the main assumption:

* The vielbein (tetrad) €*™ is a fundamental variable of quantum gravity,
not a metric tensor.

The non-trivial topology is provided by 77;(S0(1,3)) = 7,(30(3)) =L
In Euclidean gravity the vacuum is classified by two integers (m, n)

since SO(4)~SU(2)xSU(2) 7,(S0(4)) = 7,(U (2)x U (2)) =0 ®L

S. Hawking (1978): There is no vacuum tunneling due to infinite

/Cargese lectures procs./ barrier between vacuums.



In search of instantons: a simple ansatz

* A pure gauge vielbein and pure & (X) = Lab(X) oM = L*™(X)
gauge spin connection are: . "y
o™ = 1%9m[

In temporal gauge the topological vacuums 1 ; med
are classified by Chern-Simons number S 6712 Trj d"Xaes (¢ )

n

A simple hedgehog ansatz g X
€ =0(0)E"" 6, = ®pna;

with an arbitrary trial function “g”
produces a class of conformally

X = _ 2 _ 2, 42
flat metrics X=X/r, tanw=r/t, p°=r"+t

: .. : i
@:‘na is a generalization of ‘t Hooft matrices  T)jq



3 !
For the vanishing Ricci scalar R=2g(g"+ —g) =0
D

2

one obtains a simple regular solution - g(p) =1+ %

- Hawking wormhole :

44°
Rr'nn = (5mn102 o 4men)
Ricci and Weyl tensors are: p (p*+A%)

Cy,=0 — 7=0

]

The solution can be interpreted as instanton-antiinstanton pair in conformal gravity

No other appropriate instanton solutions
(asymptotically locally flat and with non-zero Hirzebruch signature)
were found



In search of instantons: 1-1 correspondence between
topological vacuums in Yang-Mills theory and gravity

e The spin connection @4 can be decomposed into rotation and boost parts
(Dmcd — (Qm9 Bm)

U (2) = O3) = 0(1,3)
70, (0(1,3)) = 7,(SO(3)) = 77, (SJ (2))

Since

one can construct vacuum spin connection vac
in terms of SU(2) gauge potential Proca (€) = (Qm’ 0)

By this way it is not easy to retrieve the
vacuum vielbein from the spin connection.



Explicit construction of non-trivial topological vacuums in
SU(2) Yang-Mills theory /Baal&Wipf-2001, Cho-2006/

Introduce orthonormal A AL
n: DN =0, =123 U2
basis of SU(2) triplets ! m 1 ’ > (2)

One has the integrability condition [ D,,, D, ]ﬁi =F X ﬁi =0

Solution to these conditions gives a pure Q= —C:;ﬁk .
gauge vacuum potential /Cho-2006/ 1
Cl=——& (A -N)
» B m="7& (NN,
Parameterizing the triplet N 2

b 3 . .
y angles of $°~SU(2) C. =sinj0_a—sinacos 0, f,
one obtains explicitly:

C. =cos )0, _a+sinasin j0_f3,

C’ =cosad_B+0, ¥

In 4d spherical coordinate system the
radial coordinate hypersurfaces are

given by S°. So one can define the | _
basis triple of left invariant o =— deCr'n,
1-forms on S° 2

do ' = 2E ijkO' j O X Maurer-Cartan eqn.



Finally, the basis of pure gauge vielbein 1-forms in polar c.s. (©,80,0,¥)
1s defined as follows:

¢ =(dp.po) = aC @

where the angle functions a(6,0,v), B(O,0,v), ¥(6,0,¥)

define the homotopy classes 73 (SU(2))

To find instanton solutions one can apply a simple ansatz:

e =(g,(p)dp, g, (p)pc’)

We will consider an ansatz corresponding .
to topological class with winding number 7 =1, i.e., weput @ =6,5=9¢,y=y

The ansatz with two functions g, , g;
(2,=g,=1) applied to Einstein eqn. produces ¢; =1/g, =1-a’/ p*
the well-known Eguchi-Hanson instanton



Explicit proof of vacuum tunneling

The space-like vielbein of E-H instanton

=1,2,3 _ | M A
defines SU(2) gauge potential A : € =g (p)po =X A (X)

I?assmg to. temporal ga.uge 'B\ U A»U 1 4UU T =0
in Cartesian coords. gives a system

of egs. for gauge parameters ¢, f U =explio(r,)7' f'(r,t)], f>=1

. r

In asymptotic regiont [] +oo one has the solution f [J 1, @[] jdt i;’ +C,(r)
where ¢, is determined by initial condition @t =—c0)=0

This implies transition from the trivial vacuum defined by N(t = —e0) =(0,0,1)

to non-trivial vacuum with N=1 at T=+e0  defined by

sina(r)cos B(r)\  where the functions o, B are defined by

N_..=-U_.n__ =|sina(r)sinj(r) A i -
cos a(r) Ui (@, T) =exp[C ()T 5 ()],

<N =1|Neg=0>_[] @ S B'(r) = (sin A(r),cos B(1),0).



Vacuum tunneling

via Fubini-Studi instanton A =z ()

gmn (t = ioo) = O

via Eguchi-Hanson instanton

neartff . 2
M~S % R A [ 0O

— P——




What 1s strange 1n this vacuum tunneling?

*1979: Hawking’s claim was rather limited to asymptotic euclidean instanton.

*1979: Why others did not claim the vacuum tunneling?

* 2008: Vacuum tunneling revisited /Y.M. Cho, Prog.Th.Phys.Suppl.,2008/

* ~1920s: Schwarzschild prefers RP3 as more simple than S°

* Indications to RP3 topology of our space:
--non-zero index I, of Dirac operator for E-H instanton;
-- existence of the electrons.

The more principal question is:
Whether vielbein really represents a variable of quantum gravity?

* Is the vielbein like a kinematic variable locally introduced on water surface?
If this 1s so, what describes the microscopic structure of the space?

* testing the quantum nature via gravitational Aharonov-Bohm effect:
calculation of holonomy operator and experimental verification.



II. Quantum gravity models with torsion

Why torsion (contortion, Lorentz connection)?

* Equivalence principle, local Lorentz symmetry, gauge principle.

If the vielbein is classic then the quantum fluctuation © fluctn . A
of spin connection will create general Lorentz connection Prros ” " Ined

* Einstein gravity as effective theory induced by quantum dynamics.

Contortion (torsion) may provide the microscopic structure of the space

* Existence of spin particles should imply torsion.

A problem of non-existency of solution for the electron in Einstein gravity

* Ideas from QCD: confinement, quantum condensate

Torsion might be unobservable as a classic object like gluon
in QCD--Quantum chromodynamics, there 1s no classical chromodynamics.

* Contortion should possess properties of connection.

Contortion as a part of Lorentz connection, not a tensor.



Yang-Mills type Lorentz gauge gravity

Utiyama gauge approach to gravity At = Puca () T K 4

Riemann-Cartan curvature : Ribed = Reped T Ropea (6 Kig)

5 , A wd d

Rabcd (e’ chd) _ D[aKb]c + K[E:':1|ch]e
The Lagrangian is : 1

_ abcd
L=~ eR™R,,
This Lagrangian admits .
&g — 5¢,ucd = 09

an additional local symmetry:

K, =D, A+[K,, Al



One-loop effective action 1n constant curvature
space-time background

. Split‘Fing the contortion into K., =K clzss +Q ;
classical and quantum parts He - HE
and assuming the vacuum averaged - 5
value for Riemann-Cartan curvature to = Rabcd >=M (nacnbd Mgl bc)
be positively constant

one can calculate a one-loop effective I’:\‘)’z 11 gz ﬁz gl’:\‘)’
potential which has a non-trivial Veff — + (ln —C)
2 2
minimum leading to torsion 3 487 U
condensate:



Induced Einstein gravity as an effective theory

Expanding the initial Lagrangian
around vacuum one obtains

the effective Lagrangian with Einstein
Hilbert term and cosmological constant

The value of M i1s related with the
minimum of the effective potential

and vacuum energy density.

Weak coupling phase:

Strong coupling phase:

L :—ieRade Rabcd =_%e(liabcd—k < ﬁéabcd >)2 =
LY VLN VE
4 2 2

P = 2Xx107Y Gev*
M?=3.6x10"*Gev’

2

a=3_~0012
47

this value 1s close to
coupling constant in SO(10) SS GUT
at unification scale 10!7 Gev



Problems, drawbacks of the Yang-Mills type gravity model

* The Hamiltonian is not positively defined;

* Two independent variables, vielbein and contortion on equal
footing. Formally the vielbein should be quantized also. But
the fundamental quantum variable should be rather only one.

* The content of spin states of contortion 1s too big to compare
with vielbein: two spin 2 states, four spin 1 states implies 24
degrees of freedom:;



Possible interrelation of QCD and Gravity

QCD

(1) Dynamical symmetry breaking,
Meissner effect, confinement,
gluon condensate

(i1) A vacuum pure gauge potential
is described by SU(2) gauge
potential

A, =Ch,
1 .
k ijkK /A A

Gravity

* Meissner effect with forming
torsion condensate
(Regge&Hanson’80s),

torsion as a genuine connection
can be confined

* Flat vielbein is represented by
the same pure gauge SU(2)

potential (in spherical
coordinates)

e* = (dp, po'), where

o = %dx“C/‘l



(111) Abelian decomposition * Decomposition of Lorentz connection
of the gauge potential

Aﬂ — A,u + X,u A,ucd — (olucd (e) + K,qu
A : ]
A=A —gnr Xd N
D,n =0 D,g, =0

N e (SU(2)/U(1)

1s unobservable topological degree

which becomes dynamical in effective = —> € 77
Faddeev-Niemi-Skyrme model /1998



[II. Minimal model of Lorentz gauge gravity with torsion

The main idea: Existence of the topological phase in the absence of torsion

The most general P, CP invariant Lagrangian quadratic in curvature:

L= _i[(OH‘ P)Rbes = (@ = V)R R™ =4 B8(Ry — RyR®) + 4R RaCdb]

Rabcd = RaLbcd + RaLbcd (e; chd)
Rabcd (e; chd) — D[aKS]c + K[Z|CKS]e

A

. A R
In constant curvature space-time, Riw = I (MacTTog = MaaToc)
we consider linear in K,

equations of motion: -




Decomposition into irreducible field components
* Pure gauge degrees of freedom (6 dof): Ky

Space components of contortion:

~~

K = &5 K

u yop " S up?

~ 1
K, = S}fp +5(§M)A—aﬂap)8t +(9,S,+0,S,)+&,,.A,,

1
K o) = R;fp +5(5M)A—E)ﬂap)Rt +(0@,R,+d,R)+¢€,,,Q,

two spin 2 states (4 dof): Sﬁfp ) Rzp
four vector spin 1 states (12 dof): S.A.R.Q
two spin 0 states (2 dof): .

t ot
total number of physical dof: 18 S,R



There are constraints in the eqns. of motion -

Additional local symmetries of the 0,K. 4= L Moo D A=y [SC A,
equations of motion: 3

5ZKbcd = [Schb - [Sdch

Koc = Xob,
Xee =0,
[Sc;t/cb =0
We impose 6 gauge fixing _
conditions 0 (Kiys —Kspi) =0,

to fix the local Lorentz symmetry: (a+ ;/)a‘ K . — 7/(8i K. 5 K, )=0
(the gauge is consistent with o i 7 y
0'0'Kjy; =0

equations of motion)



Technical details

# we split the Lorentz connection into
background and quantum parts. _
Stou a4y umb A/zcd — (D,ucd (e) + K

We consider linearized in K ; Euler-
Lagrange equations of motion

in the constant curvature background
Riemannian space.

# Normal gauge decomposition of B
geometric quantities 1s used 1n a _ca, N ocak, a
sufficient order of R. €n = O+ 36 (O XX = XX ..

# the theory is highly degenerated, there
appear constraints which strongly
suppress the dynamics of torsion. We
solve all constraints while keeping the
consistence with dynamical eqns. of
motion .

The final result of calculation 1s the following:



Special case o=1, =0, y= -3: torsion obtains dynamical degrees

All irreducible fields in the decomposition of contortion K,
are expressed in terms of four fields:

A massless vector, 2 d.o.f. The number of torsion dynamic
S, spin 2, 2 d.o.f. d.o.f. equals the number of d.o.f.
¢ =9,S for the metric tensor!

¢, =9,Q two spin 0 fields, 2 d.o.f.

Classical effective Lagrangian is: _ R
p__
24
| = tr( 32432 _» ) tr+3p tt 1( 82+52) it
g = A \md 0" =2pJA, TR »



Covariant quantization in one-loop approximation

» Effective Lagrangian with

gauge fixing terms and 2) 0 0
Faddeev-Popov ghosts has Ltot - class(ea K) + Z(Lgf T LFP)

a simple form: i=1,2,3

10 =— L (oK) O _= B R
T2 - Lep =Cq (DD "'E)Cmd

T o

g O =556,

3) 1 NCle AclF N2 L(3)__ [3[5 ﬁ

L :_E(D Kpea + D K rp =W _E)ch

3



Conclusions

Drawbacks of Yang-Mills type Lorentz
gauge gravity:

* The Hamiltonian 1s not positively
defined;

* Two independent variables, vielbein and
contortion, on equal footing.

Vielbein should be quantized also.
Which variable 1s fundamental?

* The content of spin states of contortion
1s too big to compare with vielbein, 24
degrees of freedom;

How are they resolved in the minimal
gravity with torsion:

* The kinetic terms for spin 1,2 are
positive. There is a hope that the

Hamiltonian of whole non-linear
theory is positive.
* Torsion can be treated as a unique

dynamic degree of quantum
gravity.

* The number of physical d.o.f. for
torsion and for the metric tensor
are the same.

# Metric becomes dynamical in the
effective Einstein gravity.
Topological d.o.f. turn into
dynamical ones.



Open questions




