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Preliminaries
Quantum Gravity – Great Puzzle – numerous approaches:

Quantum Einstein gravity may exist non-perturbatively
Classical geometric generalizations including torsion, Weyl fields, non-metriicty

Canonical gravity approach
Loop gravity
Spin foam models
Super-gravity, -strings, M-theory
Extra-dimensions, brane worlds
Non-commutative geometry
Analogous models in condensed matter physics
………………………
Gravitation is manifestation of geometry and it does not exist as a 

fundamental force at all       ----- an extreme viewpoint



I. Vacuum tunneling in Einstein gravity
Definitions of vacuum:

flat space-time

(i) an absolute vacuum
Fubini-Study instanton CP2

describes vacuum-vacuum transition
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(ii) Any static vacuum solution
↓

1.

2.

Asymptotically flat metric 
with space topology

S3 or RP3

0 :Λ

this type of vacuum metrics corresponds to 
asymptotically locally Euclidean instantons (ALE)
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On Fubini-Study instanton on CP2
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The anti-instanton is given by the same metric 
but with opposite orientation of the space-time, i.e. with inversed vielbein

/Egichi&Freund, PRL’1976/

An analog to BPST instanton



Topological structure of the vacuum: the main assumption:

*   The vielbein (tetrad) eam is a fundamental variable of quantum gravity, 
not a metric tensor.
The non-trivial topology is provided by

In Euclidean gravity the vacuum is classified by two integers (m, n)
since SO(4)~SU(2)xSU(2)  

S. Hawking (1978): There is no vacuum tunneling due to infinite
/Cargese lectures procs./ barrier between vacuums.
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In search of instantons: a simple ansatz

• A pure gauge vielbein and pure 
gauge spin connection are: 0
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In temporal gauge the topological vacuums 
are classified by Chern-Simons number 
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For the vanishing Ricci scalar

one obtains a simple regular solution -
- Hawking wormhole : 
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Ricci and Weyl tensors are:

The solution can be interpreted as instanton-antiinstanton pair in conformal gravity 

No other appropriate instanton solutions 
(asymptotically locally flat and with non-zero Hirzebruch signature)

were  found



In search of instantons: 1-1 correspondence between 
topological vacuums in Yang-Mills theory and gravity

• The spin connection           can be decomposed into rotation and boost partsmcdϕ
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Since 

one can construct vacuum spin connection
in terms of SU(2) gauge potential )(( ) ,0vac

mcd meϕ = Ω

By this way it is not easy to retrieve the 
vacuum vielbein from the spin connection.



Explicit construction of non-trivial topological vacuums in
SU(2) Yang-Mills theory /Baal&Wipf-2001, Cho-2006/

Introduce orthonormal
basis of SU(2) triplets  

ˆ ˆ:    0,    1, 2,3 (2)i m in D n SUα α= = ∈

One has the integrability condition ˆ ˆ[ , ] 0m n i mn iD D n F n= × =
r

Solution to these conditions gives a pure 
gauge vacuum potential /Cho-2006/
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Parameterizing the triplet 
by angles of S3~SU(2)
one obtains explicitly:
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Finally, the basis of pure gauge vielbein 1-forms in polar c.s. 
is defined as follows:
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where the angle functions ( , , ), ( , , ), ( , , )α θ φ ψ β θ φ ψ γ θ φ ψ

( , , , )ρ θ φ ψ

define the homotopy classes  3 ( (2))SUπ

To find instanton solutions one can apply a simple ansatz:
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We will consider an ansatz corresponding 
to topological class with winding number 1,  i.e.,  we put , ,τ α θ β φ γ ψ= = = =

The ansatz with two functions g0 , g3  
(g1=g2=1) applied to Einstein eqn. produces
the well-known Eguchi-Hanson instanton
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Explicit proof of vacuum tunneling

Passing to temporal gauge
in Cartesian coords. gives a system 

of eqs. for gauge parameters
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Vacuum tunneling

2,   1χ τ= =

via Eguchi-Hanson instanton

via Fubini-Studi instanton
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What is strange in this vacuum tunneling?

The more principal question is:
Whether vielbein really represents a variable of quantum gravity? 

* Is the vielbein like a kinematic variable locally introduced on water surface?
If this is so, what describes the microscopic structure of the space?

* testing the quantum nature via gravitational Aharonov-Bohm effect:
calculation of holonomy operator and experimental verification.

* 1979: Hawking’s claim was rather limited to asymptotic euclidean instanton. 
* 1979: Why others did not claim the vacuum tunneling?

* 2008: Vacuum tunneling revisited /Y.M. Cho, Prog.Th.Phys.Suppl.,2008/
* ~1920s: Schwarzschild prefers RP3 as more simple than S3

* Indications to RP3 topology of our space:
--non-zero index I3/2 of Dirac operator for E-H instanton;

-- existence of the electrons.



II. Quantum gravity models with torsion
Why torsion (contortion, Lorentz connection)?

* Equivalence principle, local Lorentz symmetry, gauge principle.
If the vielbein is classic then the quantum fluctuation 

of spin connection will create general Lorentz connection
fluctn

mcd( )mcd e Aϕ ⎯⎯⎯→

* Einstein gravity as effective theory induced by quantum dynamics.
Contortion (torsion)  may provide the microscopic structure of the space

*  Existence of spin particles should imply torsion.
A problem of non-existency of solution for the electron in Einstein gravity

*  Ideas from QCD: confinement, quantum condensate
Torsion might be unobservable as a classic object like gluon 

in QCD--Quantum chromodynamics, there is no classical chromodynamics.

* Contortion should possess properties of connection.
Contortion as a part of Lorentz connection, not a tensor.



Yang-Mills type Lorentz gauge gravity

Utiyama gauge approach to gravity

Riemann-Cartan curvature :

The Lagrangian is :

This Lagrangian admits 
an additional local symmetry:
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One-loop effective action in constant curvature
space-time background

• Splitting the contortion into 
classical and quantum parts

and assuming the vacuum averaged
value for Riemann-Cartan curvature to 

be positively constant
one can calculate a one-loop effective 

potential which has a non-trivial 
minimum leading to torsion 

condensate:
/Class. Quant. Grav.,2008/
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Induced Einstein gravity as an effective theory

Expanding the initial Lagrangian
around vacuum one obtains
the effective Lagrangian with Einstein
Hilbert term and cosmological constant

The value of M is related with the 
minimum of the effective potential
and vacuum energy density.

Weak coupling phase:

Strong coupling phase: this value is close to
coupling constant in SO(10) SS GUT 

at unification scale 1017 Gev
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Problems, drawbacks of the Yang-Mills type gravity model

* The Hamiltonian is not positively defined;
* Two independent variables, vielbein and contortion on equal 

footing. Formally the vielbein should be quantized also. But 
the fundamental quantum variable should be rather only one.

* The content of spin states of contortion is too big to compare 
with vielbein:  two spin 2 states, four spin 1 states implies 24 
degrees of freedom; 



(i) Dynamical symmetry breaking, 
Meissner effect, confinement, 
gluon condensate

(ii) A vacuum pure gauge potential 
is described by SU(2) gauge 

potential

* Meissner effect with forming 
torsion condensate 
(Regge&Hanson’80s),

torsion as a genuine connection 
can be confined

* Flat vielbein is represented by
the same pure gauge SU(2)
potential (in spherical 

coordinates)
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III. Minimal model of Lorentz gauge gravity with torsion

The main idea:   Existence of the topological phase in the absence of torsion
The most general P, CP invariant Lagrangian quadratic in curvature:

In constant curvature space-time,
we consider linear in Kmcd

equations of motion: 
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Decomposition into irreducible field components
• Pure gauge degrees of freedom (6 dof): K0cd

Space components of contortion:    

two spin 2 states (4 dof):
four vector spin 1 states (12 dof):
two spin 0 states (2 dof):
total number of physical dof: 18
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There are constraints in the eqns. of motion

Additional local symmetries of the 
equations of motion:

We impose 6 gauge fixing 
conditions

to fix the local Lorentz symmetry:
(the gauge is consistent with
equations of motion)
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Technical details

#  we split the Lorentz connection into 
background and quantum parts. 

We consider linearized in Kmcd Euler-
Lagrange equations of motion 

in the constant curvature background 
Riemannian space. 

#    Normal gauge decomposition of 
geometric quantities is used in 
sufficient order of R.

#  the theory is highly degenerated, there 
appear constraints which strongly 
suppress the dynamics of torsion. We 
solve all constraints while keeping the 
consistence with dynamical eqns. of 
motion .
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The final result of calculation is the following:



Special case α=1, β=0, γ= -3: torsion obtains dynamical degrees

All irreducible fields in the decomposition of contortion Kmcd

are expressed in terms of four fields:

massless vector,  2 d.o.f.             The number of torsion dynamic            
spin 2,                 2 d.o.f.             d.o.f. equals the number of d.o.f.          

for the metric tensor!
two spin 0 fields, 2 d.o.f.  

Classical effective Lagrangian is:
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Covariant quantization in one-loop approximation

• Effective Lagrangian with 
gauge fixing terms and 
Faddeev-Popov ghosts has
a simple form:
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Conclusions
Drawbacks of Yang-Mills type Lorentz

gauge gravity:

* The Hamiltonian is not positively 
defined; 

* Two independent variables, vielbein and 
contortion, on equal footing. 

Vielbein should be quantized also. 
Which variable is fundamental?  

* The content of spin states of contortion 
is too big to compare with vielbein, 24 
degrees of freedom;

How are they resolved in the minimal 
gravity with torsion:

* The kinetic terms for spin 1,2 are
positive. There is a hope that the 
Hamiltonian of whole non-linear 

theory is positive.
* Torsion can be treated as a unique 

dynamic degree of quantum 
gravity.

* The number of physical d.o.f. for 
torsion and for the metric tensor 
are the same.

# Metric becomes dynamical in the 
effective Einstein gravity. 
Topological d.o.f. turn into 
dynamical ones.



Open questions

* Implications in standard cosmology:
Dark matter as a classical or quantum condensate of 
torsion.

* Idea from analogous gravity models in condensed matter:  
the torsion condensate provides microscopic structure of 
space as a superfluid.

* If torsion does not exist as a classical object then the space  
before Big Bang is topological, non-metric one. 

* If there is no torsion at all then we’ll have a chance to 
invent more sophisticated and beautiful theory.


