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INTRODUCTION

Is it possible to calculate the vacuum energy in

the standard Quantum Field Theory?

“Let us settle that, when dealing with the expressions

quadratic in field operators with the same arguments, such

as the Lagrangian, energy–momentum tensor, current and

so on, we shall write them in the form of the normal prod-

uct.” . . . “As a result, the pseudo–physical quantities like

zero–point energy, zero–point charge and so on are elimi-

nated in our consideration from the very beginning.”

¥ Bogoliubov, Shirkov, “Introduction to the Theory of Quantized Fields”.
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ϕ(x) =
1

(2π)3/2

∫
d3k√
2ω(k)

[
e−ikxa(k) + eikxa+(k)

]
, (1)

where

ω(k) = k0 =
√

k2 + m2 , [a(k), a+(k′)] = δ(3)(k− k′) .

Hcl =
1

2

∫
d3kω(k) [a+(k)a(k) + a(k)a+(k)] (2)

H

Hqu =
1

2

∫
d3kω(k) :[a+(k)a(k)+a(k)a+(k)]:=

∫
d3kω(k) a+(k)a(k),

(3)

〈 0
∣∣Hqu

∣∣ 0 〉 = 0

IS THIS CORRECT?
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Yes, this is correct for scattering processes in the un-

bounded Minkowski space–time (Bogoliubov’s R–operation).

In the general case there is no rigorous answer.

Another choice of Hqu:

H ′
qu =

∫
d3kω(k)

[
a+(k)a(k) +

1

2

]
. (4)

In this case there is an explicit relation to the quantum–

mechanical oscillator with the frequency ω(k).

H ′
qu −Hqu =

1

2

∫
d3kω(k) ≡ E0, (5)

〈 0
∣∣H ′

qu

∣∣ 0 〉 = E0. (6)

Obviously, E0 →∞ for any reasonable dispersion law ω(k).
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ZERO–POINT ENERGY IN QUANTUM MECHANICS

AND IN QUANTUM FIELD THEORY

The notion of zero–point energy (ZPE) was introduced by

M. Planck in 1912.

In Quantum Mechanics one deals with a finite number of

quantum oscillators and their ZPE is an observed physical

quantity (specific heat of rigid body, vibration spectra of

diatomic molecules, and so on). Quantum field is equiva-

lent to the infinite number of oscillators.
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BASIC RESULTS FOR VACUUM ENERGY

A “naive” subtraction procedure

E0 =
1

2

∑
n

(ωn − ω̄n) , (7)

where ω̄n are calculated for a some “limiting” configuration

(without any boundaries). The progress in calculating the

Casimir energy in this approach was very slow, especially

for boundaries with curvature.

Perfectly conducting parallel plates in vacuum

E0 = −c~
π2

720

LxLy

a3
(8)

¥ Casimir, 1948.
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The Casimir force is very weak, however it increases

rapidly as the separation a decreases and it becomes mea-

surable when a ∼ 1 µm or less. For plates 1 cm2 in area

with a = 0.5 µm, the Casimir force is about 0.2 dyn. Now

experimental precision in this field is about 1%.

Perfectly conducting spherical shell

E0 = c~
1

a
0.046361 . . . (9)

¥ Boyer, 1968.

( three years of numerical computations ! ) This energy is

positive, hence the respective forces are repulsive.

For nanometer size, that is for a = 10−7 cm, the energy (9)

is about 10 eV which is of a considerable magnitude.
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Perfectly conducting infinite cylindrical shell

E0 = −c~
1

a2
0.01356 . . . (10)

¥ DeRaad and Milton, 1981; Milton, A.V.Nesterenko, NVV, 1999.

Accounting for the material properties of boundaries:

Two material (dielectric) semi–spaces separated by a

plane gap (Lifshitz formula is important for practical use)

¥ Lifshitz, 1955.

Dielectric compact ball

¥ Brevik, Marachevsky, Milton; Barton, 1999; Lambiase, Scarpetta, NVV, 2001.

Dilute dielectric compact cylinder

E0 = 0 (11)
¥ Cavero–Pelaez, Milton, 2004.
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MATHEMATICAL TOOLS FOR CALCULATING

THE VACUUM ENERGY

Here there is a considerable progress.

Spectral zeta functions

In the Casimir studies we are dealing with the following

spectral problem

Lϕn(x) = λnϕn(x) or L |n 〉 = λn |n 〉, λn = ω2
n/c2, (12)

where L = −∆+. . . with corresponding boundary (or match-

ing) conditions. By making use of the completeness rela-

tion

I =
∑
n

|n 〉〈n | , (13)
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we can define the inverse operator L−s

L−s =
∑
n

|n〉〈n|
λs

n
. (14)

The global spectral zeta function (Hawking) is defined by

ζL(s) = Tr L−s =
∑
n

λ−s
n . (15)

Definition of the spectral zeta function (15) is a direct ex-

tension of the Riemann zeta function

ζR(s) =

∞∑

n=1

1

ns, Re s > 1 (16)

to the spectrum of the operator L.

Within the approach on hand the vacuum energy E0 is

defined by

E0 =
~
2
ζL

(
s = −1

2

)
. (17)
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For calculating the density of the vacuum energy, the lo-

cal spectral zeta function ζL(s; x) can be introduced as a

diagonal element of the operator L−s

ζL(s; x) =
∑
n

〈x |n〉〈n|x〉
λs

n
=

∑
n

λ−sϕ∗n(x) ϕn(x). (18)

Obviously

ζL(s) =

∫
ζL(s; x) dx. (19)

Some examples of the spectral zeta–functions

• The zeta function in the string models:

ζstring(s) ≡ ζR(s) =

∞∑

n=1

n−s. (20)

Therefore ∞∑

n=1

n ⇒ − 1

12
. (21)
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This result leads, in a straightforward way, to the anom-

alous dimensions of the space-time in the string theory:

D = 26 (bosonic Nambu–Goto string), D = 10 (superstring).

• Perfectly conducting plates:

ζ(s) =
Lx Ly

c2s

∫
d2k

(2π)2

{
2

∞∑

n=1

[
k2 +

(nπ

a

)2
]−s

+
(
k2 + µ2

)−s
}

,

(22)

where Lx and Ly are the dimensions of the plates and the

photon mass µ is an infrared regularization. Integrating

Eq. (22) and substituting the sum over n by the Riemann

zeta function we get

ζ(s) =
Lx Ly

2π c2s

[(π

a

)2−2s ζR(2s− 2)

s− 1
+

1

2

µ2−2s

s− 1

]
. (23)

11



The zeta function (23) immediately leads to the Casimir

result

E0 =
~
2

ζ

(
−1

2

)
= −c ~

π2

720

LxLy

a3
(24)

or for the vacuum energy density

E0

V
= − c~π2

720a4
, where V = aLx Ly. (25)

The differentiation of vacuum energy (24) with respect to

the distance a gives the Casimir force

F = − π2c~
240a4

. (26)

• Perfectly conducting sphere:

ζsphere(s) ' a2s

4
s(1 + s)(2 + s){(21+2s − 1)ζR(1 + 2s)− 21+2s +

+q(s)[(23+2s − 1)ζR(3 + 2s)− 23+2s] + . . .} , (27)

q(s) =
1

480
(60 + 217s + 252s2 + 71s3). (28)
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The nearest singularity in this formula is a simple pole at

s = −3. The Casimir energy is

Esphere =
1

2
ζshell

(
−1

2

)
=

3

64a

[
1− 3

256

(
π2

2
− 4

)
+ . . .

]

=
1

a
0.046361 . . . . (29)

¥ NVV, I.G.Pirozhenko, 1998.

In Casimir calculations another spectral function is also

useful, namely, the heat kernel

K(τ ) = Tr (e−τL) =
∑

n
e−λnτ , (30)

where τ is an auxiliary variable ranging from 0 to +∞. Such

a name of this function is due to the following. By making

use of the unity operator (13) one can write

e−τL =
∑

n
e−τλn |n〉〈n| . (31)
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The matrix element of this operator

K(x, y; τ ) ≡ 〈 x |e−τL| y 〉 =
∑
n

e−τλn 〈x |n 〉〈n | y 〉

=
∑
n

e−τλnϕ∗n(x)ϕn(y) (32)

is the Green function of the heat conduction equation with

the operator L (
Lx +

∂

∂τ

)
K(x, y; τ ) = 0, (33)

K(x, y; τ ) = δ(x, y), τ → +0. (34)

For the functions K(τ ) and K(x, y; τ ) the relation analogous

to (19) holds

K(τ ) =

∫
dxK(x, x; τ ). (35)

14



In physical applications the coefficients in the asymptotic

expansion of the heat kernel, when τ → +0, are important

K(τ ) =
∑
n

e−λnτ = (4πτ )−d/2
∞∑

n=0,1,2,...

τn/2Bn/2 + ES. (36)

ES denotes exponentially small corrections as τ → +0.

B0 = V, B1/2 = ∓
√

π

2
S, . . . . (37)

The upper sign is for the Dirichlet boundary conditions

and the lower sign is for the Neumann conditions.

The first few coefficients Bn/2 yield the ultraviolet diver-

gencies of the vacuum energy.

If B2 = 0, then the zeta regularization gives a finite value

for E0.
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CONCLUSION

• One–loop calculation of the vacuum energy is incorpo-

rated into the extended formalism of Quantum Field

Theory.

• A new mathematical technique, effective and beautiful,

is developed for this purpose (spectral geometry meth-

ods).

• Predicted results are in a good agreement with the ex-

perimental data.
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THANK YOU FOR YOUR ATTENTION
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