

Search For a Heavy Neutrino and a Right-Handed W of the Left-Right Symmetric Model with the CMS Detector

(CMS EXO-11-02)

Nikolai Krasnikov INR RAS

For the CMS Collaboration

Motivation

	Standard Model	Left-Right-Symmetric Extension (LRSM)
Gauge group	$SU(2)_L \times U(1)_Y$	$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$
	LH doublets: $Q_L = (u^i, d^i)_L$, $L_L = (l^i, v^i)_L$	LH doublets: $Q_L = (u^i, d^i)_L$, $L_L = (l^i, v^i)_L$
Fermions	RH singlets: $Q_R = u_R^i$, d_R^i , $L_R = I_R^i$	RH doublets: $Q_R = (u^i, d^i)_R$, $L_R = (I^i, N^i)_R$
Neutrinos	v_R^i do not exist v_L^i are massless & pure chiral	N_R^i are heavy partners to the v_L^i N_R^i Majorana in the Minimal LRSM
Gauge bosons	${ m W^{\pm}}_{ m L}, { m Z^0}, { m \gamma}$	W_{L}^{\pm} , W_{R}^{\pm} , Z^{0} , Z' , γ

- Parity violation is built-in for the SM
 - Parity violation in LRSM via symmetry breaking at intermediate mass scale
- Neutrino oscillations require massive neutrinos
 - Forbidden in SM
 - "See saw" mechanism in LRSM

Left-Right symmetric model

Gauge group:

$$SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$$

Fermion fields

$$\begin{pmatrix} u_L \\ d_L \end{pmatrix} P \Leftrightarrow \begin{pmatrix} u_R \\ d_R \end{pmatrix} \quad \begin{pmatrix} v_L \\ e_L \end{pmatrix} P \Leftrightarrow \begin{pmatrix} v_R \\ e_R \end{pmatrix}$$

New gauge bosons

$$W^{\pm}_{R}, Z$$

♣ Higgs fields:

$$\phi(2,2,0)$$
; $\Delta_R(1,3,+2) \oplus \Delta_L(3,1,+2)$

Production and signature at pp colliders

Drell-Yan production:

$$\Leftrightarrow$$
 pp \rightarrow Z \rightarrow N₁ + N₁ + X

$$\Leftrightarrow$$
 pp \rightarrow W_R \rightarrow I + N_I + X

$$Arr N_1 \rightarrow 1 + \text{jet} + \text{jet}$$

Signatures:

- two high-Pt isolated lept.
- two high-Pt jets
- M(W_R),M(N_I) peaks

- Search for $W_R \rightarrow \ell N$ decay, additional decay of heavy neutrino
 - No L-R mixing implies N decay via virtual W^{*}_R
- Production cross section depends on mass of W_R and N
- Final state: two (same-flavor) leptons, two jets
 - Leptons not back-to-back, different p_T

Direct W_R mass limits from Tevatron

FIG. 3. 95% CL excluded W_R mass region from the *peak search*. The lines represent the contours for different values of the LRM parameters. The diagonal line is the kinematic limit for the $W_R \rightarrow e N_R$ decay.

FIG. 4. 95% CL excluded region of W_R mass from the eejj search for the no mixing case.

 $M(W_R) > 780 \text{ GeV}$ M(N) > 400 GeVD0/CDF' 97

FIG. 5. Excluded regions of W_R mass at the 95% CL assuming $g_R = g_L$ and $V^R = V^L$.

COMPACT MUON SOLENOID

CMS

Events selection

Preliminary: isolated lept., jet ID, pT > 20 GeV, efficiency check, Z control sample. Typ. : e > 70 %, mu > 80 %

Primary: at least 2l, pT > 40 GeV (of any flavour and sign) and 2 jets.

signal jet pair: 2highest pT j1, j2, eff. 90% signal lepton pair: only 2high pT l1, l2 to avoid combinatorial bckg.

 $M_N = M(12 j1 j2), 3 - 10 \% \text{ eff. loss vs } M_N$ $M_{WR} = M(11 12 j1 j2)$

EVENT RECONSTRUCTION

- Only consider two leading leptons and two leading jets
- For leptons: E_T or $P_T > 30(20)$ GeV for 2011 (2010)
- For jets: P_T > 40 GeV, no leading lepton in jet cone

Estimating Backgrounds

- Dominant Standard Model backgrounds from Top, Z+jets
 - Background shape taken from fits to Monte Carlo after full selection applied
 - Background normalization via comparison to data
- Remaining backgrounds
 - QCD: Estimated from data
 - W+jets, VV, tW (shape and normalization) estimated from simulation

SYSTEMATICS

Electron						
	Signal	Background				
Jet Energy Scale	2-20%	7%				
Reco/ID/Iso	10%	10%				
Theory	5%	14%				
Total	11-25%	23%				
	Muon					
	Signal	Background				
Jet Energy Scale	0.5-20%	5%				
Reco/ID/Iso	6-10%	1%				
Theory	5%	14%				
Total	8-25%	17%				

Jet Energy Scale

Theory Uncertainty

- Scale Uncertainty
- **PDF**
- ISR, FSR

WR SPECTRUM

WR SPECTRUM

Nikolai Krasnikov, Dubna, 5 october 2011

CMS exclusion plots

CMS exclusion plots

CMS exclusion plots for e and mu

Conclusion

 \bullet CMS has performed a search for W_R and heavy neutrinos (N) using 240/pb collected in 2010 and 2011

 No evidence observed for the presence of W_R in the datasets

- Limits set using , extending well beyond 780 GeV limit from Tevatron
 - Exclusion extends to W_R = 1700 GeV

BACKUP SLIDES

The LHC Detectors

ATLAS CMS

Well equiped to search for New Physics:

- reconstruction: l's, γ's, jets, missing E_T
- understanding of the background

Background reduction table, electrons

Table 2: Evolution of the numbers of signal and background events versus selection criteria (electron channel, electron trigger stream used). The window for the 2D peak for LRRP1 are: $1250 < M_{W_R}^c$ and < 1720, $480 < M_{N_s}^c$ and < 710. The numbers correspond to the statistics collected by the CMS detector for the integrated

Most dangerous

1		- C	0		100	$_{1}-1$
	luminosity	OI,	\mathcal{L}_{int}	=	100	po -

		<u> </u>						
Step	Signal	t ar t	Z jets	W jets	QCD	WW jets	WZ jets	Others
	LRRP1		ee	e				
Events in CMS	6.72	16200	167000	10^{6}	$2.8 \cdot 10^{10}$	4300	1800	1600
Simulated	2000	627000	2539000	2078000	$7.7 \cdot 10^7$	120000	114000	145000
Primary selection	4.86	133	413	1.5	33	2.1	5.5	3.9
Two isolated e^{\pm}	4.7	44.7	360	0.5	2.5	0.7	4.4	3.25
M_{ll} cut	4.4	5	2.7	0	0	0.13	0.06	0.025
$M_{W_R}^{cand} > 500 \text{ GeV}$	4.4	3.2	2.2	0	0	0.13	0.06	0.032
Within the 2D peak	3.28	0	0	0	0	0	0	0.004

Indirect W_R mass limits

parity transformation:

$$\phi \rightarrow \phi^{\scriptscriptstyle +}$$

then Yukawa coupling matrices

$$L_{Y} = h_{ab} \overline{Q}_{La} \phi Q_{Rb} + h.c.$$

are hermitean to be parity invariant

This implies that the quark mass matrices are hermitean provided the vacuum expectation values are real.

Left and Right CKM are the same

Indirect W_R mass limits

- ♦ beta decays: M(W_R)>230 GeV
- \clubsuit muon decays: $M(W_R)>325$ GeV
- ❖ pol.n decays: M(W_R)>270 GeV

- J. Deutsch et al. '03
 - TWIST coll. '06
- M.Schuman et al. `07
- \star K,B mixing, n-EDM:M(W_R)>2.4 TeV
- $\Delta M_{K,B}$, ε, ε', n-EDM: $M(W_R) > 2.5$ TeV

Y. Zhang et al. `07; `08.

Can these limits can be evaded?

cross section $pp \rightarrow W_R$

difference about factor 2 at 1 TeV

Nikolai Krasnikov, Dubna, 5 october 2011

W_R Interest

Such a final state with any-sign lepton pair was used recently by the CMS collaboration to search for pair production of scalar leptoquarks, for both electron and muon lepton flavors [16]. We thus use these data to impose an improved limit on the masses of W_R and N [17].

High Energy Physics - Phenomenology

First Limits on Left-Right Symmetry Scale from LHC Data

Miha Nemevsek, Fabrizio Nesti, Goran Senjanović, Yue Zhang

(Submitted on 8 Mar 2011 (v1), last revised 28 Mar 2011 (this version, v2))

We use the early Large Hadron Collider data to set the lower limit on the scale of Left-Right symmetry, by searching for the right-handed charged gauge boson \$W_R\$ via the final state with two leptons and two jets, for 33/pb integrated luminosity and 7 TeV center-of-mass energy. In the absence of a signal beyond the Standard Model background, we set the bound M_WR > 1.4 TeV at 95% C.L.. This result is obtained for a range of right-handed neutrino masses of the order of few 100 GeV, assuming no accidental cancelation in right-handed lepton mixings.

FIG. 1. Exclusion (90%, 95%, 99% CL) in the M_{W_R} – m_N plane from the eejj (left) and $\mu\mu jj$ (right) channel. We assume no accidental cancelation in the RH lepton mixings. The 2σ lower bound $\sim 1.4 \,\text{TeV}$ is valid over a range of RH neutrino masses of order several hundred GeV.

Electroweak Backgrounds

- Dominant Electroweak backgrounds from Z+jets
- Normalize Monte Carlo to fit from Z peak region, compare to NNLO cross section

• Examine dilepton mass distribution after all other selection requirements

