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Stochastic differential equation

Fluctuation effects in physics, chemistry, biology, operations
research etc: description by the Langevin equation
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= −Kϕ+ U(ϕ) + fb(ϕ) , f(t)f(t′)〉 = δ(t− t′)D .
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Fluctuation effects in physics, chemistry, biology, operations
research etc: description by the Langevin equation

∂ϕ

∂t
= −Kϕ+ U(ϕ) + fb(ϕ) , f(t)f(t′)〉 = δ(t− t′)D .

White-noise stochastic differential equation (SDE)
ill-defined. A δ sequence with finite correlation times

〈f(t,x)f(t′,x′)〉 = D(t,x; t′,x′) → δ(t− t′)D(x,x′) , t′ → t

yields Stratonovich interpretation. Mathematicians prefer Ito.
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Stochastic differential equation

Fluctuation effects in physics, chemistry, biology, operations
research etc: description by the Langevin equation

∂ϕ

∂t
= −Kϕ+ U(ϕ) + fb(ϕ) , f(t)f(t′)〉 = δ(t− t′)D .

White-noise stochastic differential equation (SDE)
ill-defined. A δ sequence with finite correlation times

〈f(t,x)f(t′,x′)〉 = D(t,x; t′,x′) → δ(t− t′)D(x,x′) , t′ → t

yields Stratonovich interpretation. Mathematicians prefer Ito.
Sometimes second-order SDE is discussed

m
∂2ϕ

∂t2
+ γ

∂ϕ

∂t
= −Kϕ+ U(ϕ) + fb(ϕ) .
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Iterative solution for correlation functions

Tree-graph solution ϕ[χ, f ] = (∂t +K)−1χ+ tree-graphs
yields correlation functions with the aid of Wick’s theorem

G(J) =
〈

eϕ[χ,f ]J
〉

=

∫

Df e−
1

2
fD

−1
feϕ[χ,f ]J .
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No closed loops of ∆ = (∂t +K)−1!
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Tree-graph solution ϕ[χ, f ] = (∂t +K)−1χ+ tree-graphs
yields correlation functions with the aid of Wick’s theorem

G(J) =
〈

eϕ[χ,f ]J
〉

=

∫

Df e−
1

2
fD

−1
feϕ[χ,f ]J .

No closed loops of ∆ = (∂t +K)−1! Alternatively, change
variables for MSR field-theory (but ambiguous Jacobian !):

G(J) =

∫

Dϕ 〈δ (ϕ− ϕ[χ, f ])〉 eϕJ

=

∫∫∫

Df DϕDϕ̃
∣

∣det
(

−∂t −K + U ′
)
∣

∣

× e−
1

2
fD

−1
f+ϕ̃(−∂tϕ−Kϕ+U(ϕ)+f)+ϕJ .
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Tree-graph solution ϕ[χ, f ] = (∂t +K)−1χ+ tree-graphs
yields correlation functions with the aid of Wick’s theorem

G(J) =
〈

eϕ[χ,f ]J
〉

=

∫

Df e−
1

2
fD

−1
feϕ[χ,f ]J .

No closed loops of ∆ = (∂t +K)−1! Alternatively, change
variables for MSR field-theory (but ambiguous Jacobian !):

G(J) =

∫

Dϕ 〈δ (ϕ− ϕ[χ, f ])〉 eϕJ

=

∫∫∫

Df DϕDϕ̃
∣

∣det
(

−∂t −K + U ′
)
∣

∣

× e−
1

2
fD

−1
f+ϕ̃(−∂tϕ−Kϕ+U(ϕ)+f)+ϕJ .

Loop expansion of |det (−∂t −K + U ′)| to remove ∆ loops.
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Fokker-Planck equation

The SDE in the Stratonovich sense yields the FPE:

∂

∂t
p (ϕ, t|ϕ0, t0) = −

∂

∂ϕ
{[−Kϕ+ U(ϕ)] p (ϕ, t|ϕ0, t0)}

+
1

2

∂

∂ϕ

{

b(ϕ)
∂

∂ϕ
[Db(ϕ)p (ϕ, t|ϕ0, t0)]

}

.
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The FPE for the Ito interpretation of the same SDE:
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Fokker-Planck equation

The SDE in the Stratonovich sense yields the FPE:

∂

∂t
p (ϕ, t|ϕ0, t0) = −

∂

∂ϕ
{[−Kϕ+ U(ϕ)] p (ϕ, t|ϕ0, t0)}

+
1

2

∂

∂ϕ

{

b(ϕ)
∂

∂ϕ
[Db(ϕ)p (ϕ, t|ϕ0, t0)]

}

.

The FPE for the Ito interpretation of the same SDE:

∂

∂t
p (ϕ, t|ϕ0, t0) = −

∂

∂ϕ
{[−Kϕ+ U(ϕ)] p (ϕ, t|ϕ0, t0)}

+
1

2

∂2

∂ϕ2
[b(ϕ)Db(ϕ)p (ϕ, t|ϕ0, t0)] .

Equations coincide, when b(ϕ) is a constant (additive noise).
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Field theory for Fokker-Planck equation

FPE similar to Schrödinger equation. Use QFT to construct
perturbative solution and cast the FPE in the operator form.
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π̂f(ϕ) = −
∂

∂ϕ
f(ϕ) , ϕ̂f(ϕ) = ϕf(ϕ) , [ϕ̂, π̂] = 1 .
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π̂f(ϕ) = −
∂

∂ϕ
f(ϕ) , ϕ̂f(ϕ) = ϕf(ϕ) , [ϕ̂, π̂] = 1 .

The Fokker-Planck equation (Ito) for the PDF p(ϕ, t) = 〈ϕ | pt 〉

∂
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Field theory for Fokker-Planck equation

FPE similar to Schrödinger equation. Use QFT to construct
perturbative solution and cast the FPE in the operator form.

π̂f(ϕ) = −
∂

∂ϕ
f(ϕ) , ϕ̂f(ϕ) = ϕf(ϕ) , [ϕ̂, π̂] = 1 .

The Fokker-Planck equation (Ito) for the PDF p(ϕ, t) = 〈ϕ | pt 〉

∂

∂t
| pt 〉 = L̂| pt 〉 , L̂ = π̂ [−Kϕ̂+ U(ϕ̂)] +

1

2
π̂2b(ϕ̂)Db(ϕ̂) .

Operators in the Heisenberg picture and Dirac picture
(Euclidean, imaginary time)

ϕ̂H(t) = e−L̂tϕ̂eL̂t , ϕ̂(t) = e−L̂0tϕ̂eL̂0t , L̂0 = −π̂Kϕ̂ .
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Green functions for expectation values

Consider the n-point Green function of Heisenberg operators

Gn(t1, t2, . . . tn) = Tr {p̂0T [ϕ̂H(t1)ϕ̂H(t2) · · · ϕ̂H(tn)]}

with the density operator p̂0 =
∫

dϕ| p0 〉〈ϕ |.
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Gn(t1, t2, . . . tn) = Tr {p̂0T [ϕ̂H(t1)ϕ̂H(t2) · · · ϕ̂H(tn)]}

with the density operator p̂0 =
∫

dϕ| p0 〉〈ϕ |. Use identity
resolutions

∫

dϕ |ϕ 〉〈ϕ | = 1 and the representation

p (ϕ, t|ϕ0, t0) =
〈

ϕ
∣

∣ exp[L̂(t− t0)]
∣

∣ ϕ0

〉
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dϕ |ϕ 〉〈ϕ | = 1 and the representation
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〈
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∣
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∫

dϕ1 . . .
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Green functions for expectation values

Consider the n-point Green function of Heisenberg operators

Gn(t1, t2, . . . tn) = Tr {p̂0T [ϕ̂H(t1)ϕ̂H(t2) · · · ϕ̂H(tn)]}

with the density operator p̂0 =
∫

dϕ| p0 〉〈ϕ |. Use identity
resolutions

∫

dϕ |ϕ 〉〈ϕ | = 1 and the representation

p (ϕ, t|ϕ0, t0) =
〈

ϕ
∣

∣ exp[L̂(t− t0)]
∣

∣ ϕ0

〉

to conclude that for t1 > t2 > t3 > . . . > tn−1 > tn > t0
∫

dϕ1 . . .

∫

dϕn ϕ1 · · ·ϕnp (ϕ1, t1; . . . ;ϕn, tn) = Gn(t1, . . . tn) .

Use the QFT to evaluate expectation values for the FPE!
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Master equation

Discontinuous sample paths, use the master equation

∂

∂t
p (ϕ, t) =

∫

dχ [W (ϕ|χ, t)p (χ, t)−W (χ|ϕ, t)p (ϕ, t)] .
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Discontinuous sample paths, use the master equation

∂

∂t
p (ϕ, t) =

∫

dχ [W (ϕ|χ, t)p (χ, t)−W (χ|ϕ, t)p (ϕ, t)] .

Description of reactions, population dynamics etc; use the
(integer valued) occupation number n and the probability
density P (t, n).
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Master equation

Discontinuous sample paths, use the master equation

∂

∂t
p (ϕ, t) =

∫

dχ [W (ϕ|χ, t)p (χ, t)−W (χ|ϕ, t)p (ϕ, t)] .

Description of reactions, population dynamics etc; use the
(integer valued) occupation number n and the probability
density P (t, n).

Classic example: stochastic Verhulst model

dP (t, n)

dt
= [β(n+ 1) + γ(n+ 1)2]P (t, n+ 1) + λ(n− 1)P (t, n− 1)

−
(

βn+ λn+ γn2
)

P (t, n)

with death rate β, birth rate λ and damping coefficient γ.
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Kinetic equation in Fock space

Construct (Doi 1976) a single kinetic equation in the a Fock
space spanned by operators â, â+ and basis vectors |n 〉:

â| 0 〉 = 0 , â+|n 〉 = |n + 1 〉 , [ â, â+] = 1 , 〈n |m 〉 = n!δnm .
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â| 0 〉 = 0 , â+|n 〉 = |n + 1 〉 , [ â, â+] = 1 , 〈n |m 〉 = n!δnm .

Master equations yield kinetic equation for state vector |Pt 〉:

d|Pt 〉

dt
= L̂(â+, â)|Pt 〉 , |Pt 〉 =

∞
∑

n=0

P (t, n)|n 〉 .
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d|Pt 〉

dt
= L̂(â+, â)|Pt 〉 , |Pt 〉 =

∞
∑

n=0
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The operator L̂ is determined by the rules:
nP (t, n)|n 〉 = â+âP (t, n)|n 〉, nP (t, n)|n− 1 〉 = âP (t, n)|n 〉 . . .
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Kinetic equation in Fock space

Construct (Doi 1976) a single kinetic equation in the a Fock
space spanned by operators â, â+ and basis vectors |n 〉:

â| 0 〉 = 0 , â+|n 〉 = |n + 1 〉 , [ â, â+] = 1 , 〈n |m 〉 = n!δnm .

Master equations yield kinetic equation for state vector |Pt 〉:

d|Pt 〉

dt
= L̂(â+, â)|Pt 〉 , |Pt 〉 =

∞
∑

n=0

P (t, n)|n 〉 .

The operator L̂ is determined by the rules:
nP (t, n)|n 〉 = â+âP (t, n)|n 〉, nP (t, n)|n− 1 〉 = âP (t, n)|n 〉 . . .

Liouville operator for the stochastic Verhulst model:

L̂(â+, â) = β(I − â+)â+ γ(I − â+)ââ+â+ λ(â+ − I)â+â .
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Green functions of number density operators

Consider the Green function of operators n̂H(t) = â+H(t)âH(t):

Gm(t1, t2, . . . tm) = Tr
{

P̂0T [n̂H(t1)n̂H(t2) · · · n̂H(tm)]
}

,

where the density operator P̂0 = |P0 〉〈P | = |P0 〉〈 0 |e
â.
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Green functions of number density operators

Consider the Green function of operators n̂H(t) = â+H(t)âH(t):

Gm(t1, t2, . . . tm) = Tr
{

P̂0T [n̂H(t1)n̂H(t2) · · · n̂H(tm)]
}

,

where the density operator P̂0 = |P0 〉〈P | = |P0 〉〈 0 |e
â. Use

identity resolutions
∑

n
1
n! |n 〉〈n | = 1 and the representation

P (n, t|n0, t0) =
1

n!

〈

n
∣

∣ exp[L̂(t− t0)]
∣

∣ n0
〉
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Green functions of number density operators

Consider the Green function of operators n̂H(t) = â+H(t)âH(t):

Gm(t1, t2, . . . tm) = Tr
{

P̂0T [n̂H(t1)n̂H(t2) · · · n̂H(tm)]
}

,

where the density operator P̂0 = |P0 〉〈P | = |P0 〉〈 0 |e
â. Use

identity resolutions
∑

n
1
n! |n 〉〈n | = 1 and the representation

P (n, t|n0, t0) =
1

n!

〈

n
∣

∣ exp[L̂(t− t0)]
∣

∣ n0
〉

to conclude that for t1 > t2 > t3 > . . . > tm−1 > tm > t0

∑

n1

. . .
∑

nm

n1 · · ·nmP (n1, t1;n2, t2; . . . ;nm, tm) = Gm(t1, t2, . . . tm) .
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Generating function

Generic form of the generating function of the moments

G(J) = Tr ρ̂0T
[

exp
(

ŜJ

)]

, ρ̂0 =

∫

dϕ| p0 〉〈ϕ | or ρ̂0 = |P0 〉〈P | ,

where ŜJ =
∫ tf
ti
dt ϕ̂H(t)J(t) or ŜJ =

∫ tf
ti
dt â+H(t)âH(t)J(t).
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Generating function

Generic form of the generating function of the moments

G(J) = Tr ρ̂0T
[

exp
(

ŜJ

)]

, ρ̂0 =

∫

dϕ| p0 〉〈ϕ | or ρ̂0 = |P0 〉〈P | ,

where ŜJ =
∫ tf
ti
dt ϕ̂H(t)J(t) or ŜJ =

∫ tf
ti
dt â+H(t)âH(t)J(t).

In the Dirac picture (L̂ = L̂0 + L̂I , tf > ti > t0)

T eŜJ = eL̂0t0Û(t0, tf )T
[

eŜJ+ŜI

]

Û(ti, t0)e
−L̂0t0

= eL̂0t0T̃ e−
∫ tf
t0

L̂(t) dtT
[

eŜJ+ŜI

]

T e
∫ ti
t0
L̂(t) dt

e−L̂0t0 ,

where Û(t, t′) = e−tL̂0e(t−t′)L̂et
′L̂0, ŜI =

∫ tf
ti
L̂I(t) dt and T̃ is the

anti-chronological product.
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Generic functional representation

T products fuse due to Wick’s theorems in a normal product:

G(J) = Tr

(

N

{

exp

[

1

2

δ

δφ1
∆̃

δ

δφ1
+

1

2

δ

δφ2
∆

δ

δφ2
+

δ

δφ1
n

δ

δφ2

]

×exp

[

SJ(φ2)−

∫ tf

t0

LI(φ1) du+

∫ tf

t0

LI(φ2) du

]
∣

∣

∣

∣

φi=φ̂

}

e−L̂0t0 ρ̂0e
L̂0t0

)

.

φ̂ is a shorthand for the operators in L̂I . Definition of the T

product fixes the ambiguity in the functional LI .
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∣
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}

e−L̂0t0 ρ̂0e
L̂0t0

)

.

φ̂ is a shorthand for the operators in L̂I . Definition of the T

product fixes the ambiguity in the functional LI .

In QFT L̂ → −i(Ĥ − µN̂)/~, ρ̂0 → e−(Ĥ−µN̂)/T /ZG yield
finite-temperature Green functions and Keldysh graphs.
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Generic functional representation

T products fuse due to Wick’s theorems in a normal product:
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]
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∣

∣

∣

φi=φ̂

}

e−L̂0t0 ρ̂0e
L̂0t0

)

.

φ̂ is a shorthand for the operators in L̂I . Definition of the T

product fixes the ambiguity in the functional LI .

In QFT L̂ → −i(Ĥ − µN̂)/~, ρ̂0 → e−(Ĥ−µN̂)/T /ZG yield
finite-temperature Green functions and Keldysh graphs.

Separate evaluation of Tr e−L̂0t0 ρ̂0e
L̂0t0N [. . .] for FPE and ME.
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Functional representation for FPE

For any operator functional F [π̂, ϕ̂] calculation yields

Tr e−L̂0t0 ρ̂0e
L̂0t0N {F [π̂, ϕ̂]} =

∫

Dϕp0(ϕ)F [0, nϕ] ,

where p0(ϕ) = p(ϕ, t0).
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Tr e−L̂0t0 ρ̂0e
L̂0t0N {F [π̂, ϕ̂]} =

∫

Dϕp0(ϕ)F [0, nϕ] ,

where p0(ϕ) = p(ϕ, t0). Therefore

G(J) =

∫

Dϕp0(ϕ) exp

[

δ

δϕ1
∆̃

δ

δπ1
+

δ

δϕ2
∆

δ

δπ2
+

δ

δϕ1
n

δ

δπ2

]

×exp

[
∫ tf

ti

dt ϕ2(t)J(t)−

∫ tf

t0

LI(π1, ϕ1) dt+

∫ tf

t0

LI(π2, ϕ2) dt

]
∣

∣

∣

∣

πi=0

ϕi=nϕ

.
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Functional representation for FPE

For any operator functional F [π̂, ϕ̂] calculation yields

Tr e−L̂0t0 ρ̂0e
L̂0t0N {F [π̂, ϕ̂]} =

∫

Dϕp0(ϕ)F [0, nϕ] ,

where p0(ϕ) = p(ϕ, t0). Therefore

G(J) =

∫

Dϕp0(ϕ) exp

[

δ

δϕ1
∆̃

δ

δπ1
+

δ

δϕ2
∆

δ

δπ2
+

δ

δϕ1
n

δ

δπ2

]

×exp

[
∫ tf

ti

dt ϕ2(t)J(t)−

∫ tf

t0

LI(π1, ϕ1) dt+

∫ tf

t0

LI(π2, ϕ2) dt

]
∣

∣

∣

∣

πi=0

ϕi=nϕ

.

In the limit tf → ∞, ti → −∞ we arrive at Keldysh rules.
Cancelation of closed propagator loops is produced by the
auxiliary set of fields π1, ϕ1.
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Functional integral for FPE

In first-order models closed loops of ∆, ∆̃ vanish. The
contribution of fields π1, ϕ1 is reduced to a constant:

G(J) =

∫

Dϕp0(ϕ)
[

e
δ

δϕ2
∆ δ

δπ2 eSI(π2,ϕ2)+ϕ2J
]
∣

∣

∣

π=0

ϕ2=nϕ

.
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e
δ
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∣

∣

∣

π=0

ϕ2=nϕ

.

Introduce functional integral through the Gaussian trick

e
δ
δϕ

∆ δ
δπ =

∫∫

DφDφ̃ e−φ̃∆−1φ+φ̃ δ
δπ

+φ δ
δϕ .
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contribution of fields π1, ϕ1 is reduced to a constant:

G(J) =

∫

Dϕp0(ϕ)
[

e
δ

δϕ2
∆ δ

δπ2 eSI(π2,ϕ2)+ϕ2J
]
∣

∣

∣

π=0

ϕ2=nϕ

.

Introduce functional integral through the Gaussian trick

e
δ
δϕ

∆ δ
δπ =

∫∫

DφDφ̃ e−φ̃∆−1φ+φ̃ δ
δπ

+φ δ
δϕ .

Obtain generating function of Martin-Siggia-Rose theory:

G(J) =

∫∫∫

DϕDφDφ̃ p0(ϕ) e
−φ̃(∂t+K)φ+SI(φ̃,φ+nϕ)+(φ+nϕ)J .
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Functional integral for Schwinger-Keldysh

The functional LI is quadratic in π. Therefore (constant b)

G(J) =

∫∫∫

DϕDη1Dη2 p0(ϕ) exp

{

J(∆η2 + nϕ)

+
1

2
η2bDbη2 −

1

2
η1bDbη1 + η1(bDb)−1U1 + η2(bDb)−1U2

+
1

2
U1(bDb)−1U1 −

1

2
U2(bDb)−1U2

}

,

where U1 = U(∆̃η1 + nη2 + nϕ) , U2 = U(∆η2 + nϕ) .
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Functional integral for Schwinger-Keldysh

The functional LI is quadratic in π. Therefore (constant b)

G(J) =

∫∫∫

DϕDη1Dη2 p0(ϕ) exp

{

J(∆η2 + nϕ)

+
1

2
η2bDbη2 −

1

2
η1bDbη1 + η1(bDb)−1U1 + η2(bDb)−1U2

+
1

2
U1(bDb)−1U1 −

1

2
U2(bDb)−1U2

}

,

where U1 = U(∆̃η1 + nη2 + nϕ) , U2 = U(∆η2 + nϕ) .

Cancelations are now explicit in the functional integral.

Should be more convenient numerically than use of ghosts.
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Functional representation for ME

Generating function of Green functions of number density
operators has a more complicated expression

G(J) =

∫

ds

2πi
esG̃(s) exp

[

δ

δa1
∆̃

δ

δa+1
+

δ

δa2
∆

δ

δa+2
+

δ

δa1
n

δ

δa+2

]

× exp

{
∫

[

−LI(a
+
1 + 1, a1) + LI(a

+
2 + 1, a2)

]

dt

}

× exp

{
∫

[

(a+2 (t) + 1)a2(t)
]

J(t) dt

}
∣

∣

∣

∣

a
+

i
=0

ai=ns

,

where

G̃(s) =

∞
∑

n=1

Γ(n)

sn
P (0, n− 1) .
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Conclusion

Ambiguities in stochastic field theory both from ambiguity
of SDE and ambiguity of functional representation.
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Conclusion

Ambiguities in stochastic field theory both from ambiguity
of SDE and ambiguity of functional representation.

Ambiguity of functional representation gives rise to the
determinant problem.

Unambiguous SDE: choice of either Ito or Stratonovich
interpretation, use Fokker-Planck equation.

Unambiguous functional representation: definition of the
T product at coinciding time arguments.

Solution of the determinant problem with the aid of
Schwinger-Keldysh approach.

Schwinger-Keldysh approach advantageous for
numerical calculation.
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