Green Functions in Stochastic Field Theory

Juha Honkonen

National Defence University, Helsinki, Finland

Outline

- Stochastic differential equation
- Fokker-Planck equation
- Field theory for Fokker-Planck equation
- Master equation
- Field theory for master equation
- Generating functions of Green functions
- Functional representation of Schwinger-Keldysh formalism
- Functional integral representation

Stochastic differential equation

Fluctuation effects in physics, chemistry, biology, operations research etc: description by the Langevin equation

Stochastic differential equation

Fluctuation effects in physics, chemistry, biology, operations research etc: description by the Langevin equation

$$
\left.\frac{\partial \varphi}{\partial t}=-K \varphi+U(\varphi)+f b(\varphi), \quad f(t) f\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right) D .
$$

Stochastic differential equation

Fluctuation effects in physics, chemistry, biology, operations research etc: description by the Langevin equation

$$
\left.\frac{\partial \varphi}{\partial t}=-K \varphi+U(\varphi)+f b(\varphi), \quad f(t) f\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right) D .
$$

White-noise stochastic differential equation (SDE) ill-defined. A δ sequence with finite correlation times

$$
\left\langle f(t, \mathbf{x}) f\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right\rangle=\bar{D}\left(t, \mathbf{x} ; t^{\prime}, \mathbf{x}^{\prime}\right) \rightarrow \delta\left(t-t^{\prime}\right) D\left(\mathbf{x}, \mathbf{x}^{\prime}\right), \quad t^{\prime} \rightarrow t
$$

yields Stratonovich interpretation. Mathematicians prefer Ito.

Stochastic differential equation

Fluctuation effects in physics, chemistry, biology, operations research etc: description by the Langevin equation

$$
\left.\frac{\partial \varphi}{\partial t}=-K \varphi+U(\varphi)+f b(\varphi), \quad f(t) f\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right) D .
$$

White-noise stochastic differential equation (SDE) ill-defined. A δ sequence with finite correlation times

$$
\left\langle f(t, \mathbf{x}) f\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right\rangle=\bar{D}\left(t, \mathbf{x} ; t^{\prime}, \mathbf{x}^{\prime}\right) \rightarrow \delta\left(t-t^{\prime}\right) D\left(\mathbf{x}, \mathbf{x}^{\prime}\right), \quad t^{\prime} \rightarrow t
$$

yields Stratonovich interpretation. Mathematicians prefer Ito. Sometimes second-order SDE is discussed

$$
m \frac{\partial^{2} \varphi}{\partial t^{2}}+\gamma \frac{\partial \varphi}{\partial t}=-K \varphi+U(\varphi)+f b(\varphi) .
$$

Iterative solution for correlation functions

Tree-graph solution $\varphi[\chi, f]=\left(\partial_{t}+K\right)^{-1} \chi+$ tree-graphs yields correlation functions with the aid of Wick's theorem

$$
G(J)=\left\langle e^{\varphi[\chi, f] J}\right\rangle=\int \mathcal{D} f e^{-\frac{1}{2} f \bar{D}^{-1} f} e^{\varphi[\chi, f] J} .
$$

Iterative solution for correlation functions

Tree-graph solution $\varphi[\chi, f]=\left(\partial_{t}+K\right)^{-1} \chi+$ tree-graphs yields correlation functions with the aid of Wick's theorem

$$
G(J)=\left\langle e^{\varphi[\chi, f] J}\right\rangle=\int \mathcal{D} f e^{-\frac{1}{2} f \bar{D}^{-1} f} e^{\varphi[\chi, f] J} .
$$

No closed loops of $\Delta=\left(\partial_{t}+K\right)^{-1}$!

Iterative solution for correlation functions

Tree-graph solution $\varphi[\chi, f]=\left(\partial_{t}+K\right)^{-1} \chi+$ tree-graphs yields correlation functions with the aid of Wick's theorem

$$
G(J)=\left\langle e^{\varphi[\chi, f] J}\right\rangle=\int \mathcal{D} f e^{-\frac{1}{2} f \bar{D}^{-1} f} e^{\varphi[\chi, f]]} .
$$

No closed loops of $\Delta=\left(\partial_{t}+K\right)^{-1}$! Alternatively, change variables for MSR field-theory (but ambiguous Jacobian !):

$$
\begin{aligned}
& G(J)=\int \mathcal{D} \varphi\varphi \delta(\varphi-\varphi[\chi, f])\rangle e^{\varphi J} \\
&=\iiint \mathcal{D} f \mathcal{D} \varphi \mathcal{D} \tilde{\varphi}\left|\operatorname{det}\left(-\partial_{t}-K+U^{\prime}\right)\right| \\
& \times e^{-\frac{1}{2} f \bar{D}^{-1} f+\tilde{\varphi}\left(-\partial_{t} \varphi-K \varphi+U(\varphi)+f\right)+\varphi J} .
\end{aligned}
$$

Iterative solution for correlation functions

Tree-graph solution $\varphi[\chi, f]=\left(\partial_{t}+K\right)^{-1} \chi+$ tree-graphs yields correlation functions with the aid of Wick's theorem

$$
G(J)=\left\langle e^{\varphi[\chi, f] J}\right\rangle=\int \mathcal{D} f e^{-\frac{1}{2} f \bar{D}^{-1}} f_{e} e^{\varphi[\chi, f] J} .
$$

No closed loops of $\Delta=\left(\partial_{t}+K\right)^{-1}$! Alternatively, change variables for MSR field-theory (but ambiguous Jacobian !):

$$
\begin{array}{rl}
G(J)=\int \mathcal{D} & \varphi\langle\delta(\varphi-\varphi[\chi, f])\rangle e^{\varphi J} \\
=\iiint \mathcal{D} f & \mathcal{D} \varphi \mathcal{D} \tilde{\varphi}\left|\operatorname{det}\left(-\partial_{t}-K+U^{\prime}\right)\right| \\
& \quad \times e^{-\frac{1}{2} f \bar{D}^{-1} f+\tilde{\varphi}\left(-\partial_{t} \varphi-K \varphi+U(\varphi)+f\right)+\varphi J} .
\end{array}
$$

Loop expansion of $\left|\operatorname{det}\left(-\partial_{t}-K+U^{\prime}\right)\right|$ to remove Δ loops.

Fokker-Planck equation

The SDE in the Stratonovich sense yields the FPE:

$$
\begin{aligned}
\frac{\partial}{\partial t} p\left(\varphi, t \mid \varphi_{0}, t_{0}\right)=- & \frac{\partial}{\partial \varphi}
\end{aligned} \quad\left\{[-K \varphi+U(\varphi)] p\left(\varphi, t \mid \varphi_{0}, t_{0}\right)\right\},
$$

Fokker-Planck equation

The SDE in the Stratonovich sense yields the FPE:

$$
\begin{aligned}
\frac{\partial}{\partial t} p\left(\varphi, t \mid \varphi_{0}, t_{0}\right)=-\frac{\partial}{\partial \varphi} & \left\{[-K \varphi+U(\varphi)] p\left(\varphi, t \mid \varphi_{0}, t_{0}\right)\right\} \\
& +\frac{1}{2} \frac{\partial}{\partial \varphi}\left\{b(\varphi) \frac{\partial}{\partial \varphi}\left[D b(\varphi) p\left(\varphi, t \mid \varphi_{0}, t_{0}\right)\right]\right\} .
\end{aligned}
$$

The FPE for the Ito interpretation of the same SDE:

$$
\begin{aligned}
\frac{\partial}{\partial t} p\left(\varphi, t \mid \varphi_{0}, t_{0}\right)=-\frac{\partial}{\partial \varphi}\{[-K \varphi & \left.+U(\varphi)] p\left(\varphi, t \mid \varphi_{0}, t_{0}\right)\right\} \\
& +\frac{1}{2} \frac{\partial^{2}}{\partial \varphi^{2}}\left[b(\varphi) D b(\varphi) p\left(\varphi, t \mid \varphi_{0}, t_{0}\right)\right] .
\end{aligned}
$$

Fokker-Planck equation

The SDE in the Stratonovich sense yields the FPE:

$$
\begin{aligned}
\frac{\partial}{\partial t} p\left(\varphi, t \mid \varphi_{0}, t_{0}\right)=- & \frac{\partial}{\partial \varphi}
\end{aligned} \quad\left\{[-K \varphi+U(\varphi)] p\left(\varphi, t \mid \varphi_{0}, t_{0}\right)\right\},
$$

The FPE for the Ito interpretation of the same SDE:

$$
\begin{aligned}
\frac{\partial}{\partial t} p\left(\varphi, t \mid \varphi_{0}, t_{0}\right)=-\frac{\partial}{\partial \varphi}\{[-K \varphi & \left.+U(\varphi)] p\left(\varphi, t \mid \varphi_{0}, t_{0}\right)\right\} \\
& +\frac{1}{2} \frac{\partial^{2}}{\partial \varphi^{2}}\left[b(\varphi) D b(\varphi) p\left(\varphi, t \mid \varphi_{0}, t_{0}\right)\right] .
\end{aligned}
$$

Equations coincide, when $b(\varphi)$ is a constant (additive noise).

Field theory for Fokker-Planck equation

FPE similar to Schrödinger equation. Use QFT to construct perturbative solution and cast the FPE in the operator form.

Field theory for Fokker-Planck equation

FPE similar to Schrödinger equation. Use QFT to construct perturbative solution and cast the FPE in the operator form.

$$
\hat{\pi} f(\varphi)=-\frac{\partial}{\partial \varphi} f(\varphi), \quad \hat{\varphi} f(\varphi)=\varphi f(\varphi), \quad[\hat{\varphi}, \hat{\pi}]=1
$$

Field theory for Fokker-Planck equation

FPE similar to Schrödinger equation. Use QFT to construct perturbative solution and cast the FPE in the operator form.

$$
\hat{\pi} f(\varphi)=-\frac{\partial}{\partial \varphi} f(\varphi), \quad \hat{\varphi} f(\varphi)=\varphi f(\varphi), \quad[\hat{\varphi}, \hat{\pi}]=1
$$

The Fokker-Planck equation (Ito) for the PDF $p(\varphi, t)=\left\langle\varphi \mid p_{t}\right\rangle$

$$
\frac{\partial}{\partial t}\left|p_{t}\right\rangle=\hat{L}\left|p_{t}\right\rangle, \quad \hat{L}=\hat{\pi}[-K \hat{\varphi}+U(\hat{\varphi})]+\frac{1}{2} \hat{\pi}^{2} b(\hat{\varphi}) D b(\hat{\varphi}) .
$$

Field theory for Fokker-Planck equation

FPE similar to Schrödinger equation. Use QFT to construct perturbative solution and cast the FPE in the operator form.

$$
\hat{\pi} f(\varphi)=-\frac{\partial}{\partial \varphi} f(\varphi), \quad \hat{\varphi} f(\varphi)=\varphi f(\varphi), \quad[\hat{\varphi}, \hat{\pi}]=1
$$

The Fokker-Planck equation (Ito) for the $\operatorname{PDF} p(\varphi, t)=\left\langle\varphi \mid p_{t}\right\rangle$

$$
\frac{\partial}{\partial t}\left|p_{t}\right\rangle=\hat{L}\left|p_{t}\right\rangle, \quad \hat{L}=\hat{\pi}[-K \hat{\varphi}+U(\hat{\varphi})]+\frac{1}{2} \hat{\pi}^{2} b(\hat{\varphi}) D b(\hat{\varphi}) .
$$

Operators in the Heisenberg picture and Dirac picture (Euclidean, imaginary time)

$$
\hat{\varphi}_{H}(t)=e^{-\hat{L} t} \hat{\varphi} e^{\hat{L} t}, \quad \hat{\varphi}(t)=e^{-\hat{L}_{0} t} \hat{\varphi} e^{\hat{L}_{0} t}, \quad \hat{L}_{0}=-\hat{\pi} K \hat{\varphi} .
$$

Green functions for expectation values

Consider the n-point Green function of Heisenberg operators

$$
G_{n}\left(t_{1}, t_{2}, \ldots t_{n}\right)=\operatorname{Tr}\left\{\hat{p}_{0} T\left[\hat{\varphi}_{H}\left(t_{1}\right) \hat{\varphi}_{H}\left(t_{2}\right) \cdots \hat{\varphi}_{H}\left(t_{n}\right)\right]\right\}
$$

with the density operator $\hat{p}_{0}=\int d \varphi\left|p_{0}\right\rangle\langle\varphi|$.

Green functions for expectation values

Consider the n-point Green function of Heisenberg operators

$$
G_{n}\left(t_{1}, t_{2}, \ldots t_{n}\right)=\operatorname{Tr}\left\{\hat{p}_{0} T\left[\hat{\varphi}_{H}\left(t_{1}\right) \hat{\varphi}_{H}\left(t_{2}\right) \cdots \hat{\varphi}_{H}\left(t_{n}\right)\right]\right\}
$$

with the density operator $\hat{p}_{0}=\int d \varphi\left|p_{0}\right\rangle\langle\varphi|$. Use identity resolutions $\int d \varphi|\varphi\rangle\langle\varphi|=1$ and the representation

$$
p\left(\varphi, t \mid \varphi_{0}, t_{0}\right)=\langle\varphi| \exp \left[\hat{L}\left(t-t_{0}\right)\right]\left|\varphi_{0}\right\rangle
$$

Green functions for expectation values

Consider the n-point Green function of Heisenberg operators

$$
G_{n}\left(t_{1}, t_{2}, \ldots t_{n}\right)=\operatorname{Tr}\left\{\hat{p}_{0} T\left[\hat{\varphi}_{H}\left(t_{1}\right) \hat{\varphi}_{H}\left(t_{2}\right) \cdots \hat{\varphi}_{H}\left(t_{n}\right)\right]\right\}
$$

with the density operator $\hat{p}_{0}=\int d \varphi\left|p_{0}\right\rangle\langle\varphi|$. Use identity resolutions $\int d \varphi|\varphi\rangle\langle\varphi|=1$ and the representation

$$
p\left(\varphi, t \mid \varphi_{0}, t_{0}\right)=\langle\varphi| \exp \left[\hat{L}\left(t-t_{0}\right)\right]\left|\varphi_{0}\right\rangle
$$

to conclude that for $t_{1}>t_{2}>t_{3}>\ldots>t_{n-1}>t_{n}>t_{0}$

$$
\int d \varphi_{1} \ldots \int d \varphi_{n} \varphi_{1} \cdots \varphi_{n} p\left(\varphi_{1}, t_{1} ; \ldots ; \varphi_{n}, t_{n}\right)=G_{n}\left(t_{1}, \ldots t_{n}\right) .
$$

Green functions for expectation values

Consider the n-point Green function of Heisenberg operators

$$
G_{n}\left(t_{1}, t_{2}, \ldots t_{n}\right)=\operatorname{Tr}\left\{\hat{p}_{0} T\left[\hat{\varphi}_{H}\left(t_{1}\right) \hat{\varphi}_{H}\left(t_{2}\right) \cdots \hat{\varphi}_{H}\left(t_{n}\right)\right]\right\}
$$

with the density operator $\hat{p}_{0}=\int d \varphi\left|p_{0}\right\rangle\langle\varphi|$. Use identity resolutions $\int d \varphi|\varphi\rangle\langle\varphi|=1$ and the representation

$$
p\left(\varphi, t \mid \varphi_{0}, t_{0}\right)=\langle\varphi| \exp \left[\hat{L}\left(t-t_{0}\right)\right]\left|\varphi_{0}\right\rangle
$$

to conclude that for $t_{1}>t_{2}>t_{3}>\ldots>t_{n-1}>t_{n}>t_{0}$

$$
\int d \varphi_{1} \ldots \int d \varphi_{n} \varphi_{1} \cdots \varphi_{n} p\left(\varphi_{1}, t_{1} ; \ldots ; \varphi_{n}, t_{n}\right)=G_{n}\left(t_{1}, \ldots t_{n}\right) .
$$

Use the QFT to evaluate expectation values for the FPE!

Master equation

Discontinuous sample paths, use the master equation

$$
\frac{\partial}{\partial t} p(\varphi, t)=\int d \chi[W(\varphi \mid \chi, t) p(\chi, t)-W(\chi \mid \varphi, t) p(\varphi, t)]
$$

Master equation

Discontinuous sample paths, use the master equation

$$
\frac{\partial}{\partial t} p(\varphi, t)=\int d \chi[W(\varphi \mid \chi, t) p(\chi, t)-W(\chi \mid \varphi, t) p(\varphi, t)] .
$$

Description of reactions, population dynamics etc; use the (integer valued) occupation number n and the probability density $P(t, n)$.

Master equation

Discontinuous sample paths, use the master equation

$$
\frac{\partial}{\partial t} p(\varphi, t)=\int d \chi[W(\varphi \mid \chi, t) p(\chi, t)-W(\chi \mid \varphi, t) p(\varphi, t)] .
$$

Description of reactions, population dynamics etc; use the (integer valued) occupation number n and the probability density $P(t, n)$.
Classic example: stochastic Verhulst model

$$
\begin{aligned}
\frac{\mathrm{d} P(t, n)}{\mathrm{d} t}=\left[\beta(n+1)+\gamma(n+1)^{2}\right] P(& t, n+1)+\lambda(n-1) P(t, n-1) \\
& -\left(\beta n+\lambda n+\gamma n^{2}\right) P(t, n)
\end{aligned}
$$

with death rate β, birth rate λ and damping coefficient γ.

Kinetic equation in Fock space

Construct (Doi 1976) a single kinetic equation in the a Fock space spanned by operators \hat{a}, \hat{a}^{+}and basis vectors $|n\rangle$:

$$
\hat{a}|0\rangle=0, \quad \hat{a}^{+}|n\rangle=|n+1\rangle, \quad\left[\hat{a}, \hat{a}^{+}\right]=1, \quad\langle n \mid m\rangle=n!\delta_{n m} .
$$

Kinetic equation in Fock space

Construct (Doi 1976) a single kinetic equation in the a Fock space spanned by operators \hat{a}, \hat{a}^{+}and basis vectors $|n\rangle$:

$$
\hat{a}|0\rangle=0, \quad \hat{a}^{+}|n\rangle=|n+1\rangle, \quad\left[\hat{a}, \hat{a}^{+}\right]=1, \quad\langle n \mid m\rangle=n!\delta_{n m} .
$$

Master equations yield kinetic equation for state vector $\left|P_{t}\right\rangle$:

$$
\frac{\mathrm{d}\left|P_{t}\right\rangle}{\mathrm{d} t}=\hat{L}\left(\hat{a}^{+}, \hat{a}\right)\left|P_{t}\right\rangle, \quad\left|P_{t}\right\rangle=\sum_{n=0}^{\infty} P(t, n)|n\rangle .
$$

Kinetic equation in Fock space

Construct (Doi 1976) a single kinetic equation in the a Fock space spanned by operators \hat{a}, \hat{a}^{+}and basis vectors $|n\rangle$:

$$
\hat{a}|0\rangle=0, \quad \hat{a}^{+}|n\rangle=|n+1\rangle, \quad\left[\hat{a}, \hat{a}^{+}\right]=1, \quad\langle n \mid m\rangle=n!\delta_{n m} .
$$

Master equations yield kinetic equation for state vector $\left|P_{t}\right\rangle$:

$$
\frac{\mathrm{d}\left|P_{t}\right\rangle}{\mathrm{d} t}=\hat{L}\left(\hat{a}^{+}, \hat{a}\right)\left|P_{t}\right\rangle, \quad\left|P_{t}\right\rangle=\sum_{n=0}^{\infty} P(t, n)|n\rangle .
$$

The operator \hat{L} is determined by the rules:
$n P(t, n)|n\rangle=\hat{a}^{+} \hat{a} P(t, n)|n\rangle, n P(t, n)|n-1\rangle=\hat{a} P(t, n)|n\rangle \ldots$

Kinetic equation in Fock space

Construct (Doi 1976) a single kinetic equation in the a Fock space spanned by operators \hat{a}, \hat{a}^{+}and basis vectors $|n\rangle$:

$$
\hat{a}|0\rangle=0, \quad \hat{a}^{+}|n\rangle=|n+1\rangle, \quad\left[\hat{a}, \hat{a}^{+}\right]=1, \quad\langle n \mid m\rangle=n!\delta_{n m} .
$$

Master equations yield kinetic equation for state vector $\left|P_{t}\right\rangle$:

$$
\frac{\mathrm{d}\left|P_{t}\right\rangle}{\mathrm{d} t}=\hat{L}\left(\hat{a}^{+}, \hat{a}\right)\left|P_{t}\right\rangle, \quad\left|P_{t}\right\rangle=\sum_{n=0}^{\infty} P(t, n)|n\rangle .
$$

The operator \hat{L} is determined by the rules:
$n P(t, n)|n\rangle=\hat{a}^{+} \hat{a} P(t, n)|n\rangle, n P(t, n)|n-1\rangle=\hat{a} P(t, n)|n\rangle \ldots$ Liouville operator for the stochastic Verhulst model:

$$
\hat{L}\left(\hat{a}^{+}, \hat{a}\right)=\beta\left(I-\hat{a}^{+}\right) \hat{a}+\gamma\left(I-\hat{a}^{+}\right) \hat{a}^{+} \hat{a}+\lambda\left(\hat{a}^{+}-I\right) \hat{a}^{+} \hat{a} .
$$

Green functions of number density operators

Consider the Green function of operators $\hat{n}_{H}(t)=\hat{a}_{H}^{+}(t) \hat{a}_{H}(t)$:

$$
G_{m}\left(t_{1}, t_{2}, \ldots t_{m}\right)=\operatorname{Tr}\left\{\hat{P}_{0} T\left[\hat{n}_{H}\left(t_{1}\right) \hat{n}_{H}\left(t_{2}\right) \cdots \hat{n}_{H}\left(t_{m}\right)\right]\right\},
$$

where the density operator $\hat{P}_{0}=\left|P_{0}\right\rangle\langle P|=\left|P_{0}\right\rangle\langle 0| e^{\hat{a}}$.

Green functions of number density operators

Consider the Green function of operators $\hat{n}_{H}(t)=\hat{a}_{H}^{+}(t) \hat{a}_{H}(t)$:

$$
G_{m}\left(t_{1}, t_{2}, \ldots t_{m}\right)=\operatorname{Tr}\left\{\hat{P}_{0} T\left[\hat{n}_{H}\left(t_{1}\right) \hat{n}_{H}\left(t_{2}\right) \cdots \hat{n}_{H}\left(t_{m}\right)\right]\right\},
$$

where the density operator $\hat{P}_{0}=\left|P_{0}\right\rangle\langle P|=\left|P_{0}\right\rangle\langle 0| e^{\hat{a}}$. Use identity resolutions $\sum_{n} \frac{1}{n!}|n\rangle\langle n|=1$ and the representation

$$
P\left(n, t \mid n_{0}, t_{0}\right)=\frac{1}{n!}\langle n| \exp \left[\hat{L}\left(t-t_{0}\right)\right]\left|n_{0}\right\rangle
$$

Green functions of number density operators

Consider the Green function of operators $\hat{n}_{H}(t)=\hat{a}_{H}^{+}(t) \hat{a}_{H}(t)$:

$$
G_{m}\left(t_{1}, t_{2}, \ldots t_{m}\right)=\operatorname{Tr}\left\{\hat{P}_{0} T\left[\hat{n}_{H}\left(t_{1}\right) \hat{n}_{H}\left(t_{2}\right) \cdots \hat{n}_{H}\left(t_{m}\right)\right]\right\},
$$

where the density operator $\hat{P}_{0}=\left|P_{0}\right\rangle\langle P|=\left|P_{0}\right\rangle\langle 0| e^{\hat{a}}$. Use identity resolutions $\sum_{n} \frac{1}{n!}|n\rangle\langle n|=1$ and the representation

$$
P\left(n, t \mid n_{0}, t_{0}\right)=\frac{1}{n!}\langle n| \exp \left[\hat{L}\left(t-t_{0}\right)\right]\left|n_{0}\right\rangle
$$

to conclude that for $t_{1}>t_{2}>t_{3}>\ldots>t_{m-1}>t_{m}>t_{0}$
$\sum_{n_{1}} \ldots \sum_{n_{m}} n_{1} \cdots n_{m} P\left(n_{1}, t_{1} ; n_{2}, t_{2} ; \ldots ; n_{m}, t_{m}\right)=G_{m}\left(t_{1}, t_{2}, \ldots t_{m}\right)$

Generating function

Generic form of the generating function of the moments

$$
G(J)=\operatorname{Tr} \hat{\rho}_{0} T\left[\exp \left(\hat{S}_{J}\right)\right], \quad \hat{\rho}_{0}=\int d \varphi\left|p_{0}\right\rangle\langle\varphi| \text { or } \hat{\rho}_{0}=\left|P_{0}\right\rangle\langle P|,
$$

where $\hat{S}_{J}=\int_{t_{i}}^{t_{f}} d t \hat{\varphi}_{H}(t) J(t)$ or $\hat{S}_{J}=\int_{t_{i}}^{t_{f}} d t \hat{a}_{H}^{+}(t) \hat{a}_{H}(t) J(t)$.

Generating function

Generic form of the generating function of the moments
$G(J)=\operatorname{Tr} \hat{\rho}_{0} T\left[\exp \left(\hat{S}_{J}\right)\right], \quad \hat{\rho}_{0}=\int d \varphi\left|p_{0}\right\rangle\langle\varphi|$ or $\hat{\rho}_{0}=\left|P_{0}\right\rangle\langle P|$,
where $\hat{S}_{J}=\int_{t_{i}}^{t_{f}} d t \hat{\varphi}_{H}(t) J(t)$ or $\hat{S}_{J}=\int_{t_{i}}^{t_{f}} d t \hat{a}_{H}^{+}(t) \hat{a}_{H}(t) J(t)$. In the Dirac picture $\left(\hat{L}=\hat{L}_{0}+\hat{L}_{I}, \quad t_{f}>t_{i}>t_{0}\right)$

$$
\begin{aligned}
& T e^{\hat{S}_{J}}=e^{\hat{L}_{0} t_{0}} \hat{U}\left(t_{0}, t_{f}\right) T\left[e^{\hat{S}_{J}+\hat{S}_{I}}\right] \hat{U}\left(t_{i}, t_{0}\right) e^{-\hat{L}_{0} t_{0}} \\
&=e^{\hat{L}_{0} t_{0}} \tilde{T} e^{-\int_{t_{0}}^{t_{t}} \hat{L}(t) d t} T\left[e^{\hat{S}_{J}+\hat{S}_{I}}\right] T e^{\int_{t_{0}}^{t_{0}} \hat{L}(t) d t} e^{-\hat{L}_{0} t_{0}},
\end{aligned}
$$

 anti-chronological product.

Generic functional representation

T products fuse due to Wick's theorems in a normal product:

$$
G(J)=\operatorname{Tr}\left(N \left\{\exp \left[\frac{1}{2} \frac{\delta}{\delta \phi_{1}} \tilde{\Delta} \frac{\delta}{\delta \phi_{1}}+\frac{1}{2} \frac{\delta}{\delta \phi_{2}} \Delta \frac{\delta}{\delta \phi_{2}}+\frac{\delta}{\delta \phi_{1}} n \frac{\delta}{\delta \phi_{2}}\right]\right.\right.
$$

$\left.\left.\times\left.\exp \left[S_{J}\left(\phi_{2}\right)-\int_{t_{0}}^{t_{f}} L_{I}\left(\phi_{1}\right) d u+\int_{t_{0}}^{t_{f}} L_{I}\left(\phi_{2}\right) d u\right]\right|_{\phi_{i}=\hat{\phi}}\right\} e^{-\hat{L}_{0} t_{0}} \hat{\rho}_{0} e^{\hat{L}_{0} t_{0}}\right)$
$\hat{\phi}$ is a shorthand for the operators in \hat{L}_{I}. Definition of the T product fixes the ambiguity in the functional L_{I}.

Generic functional representation

T products fuse due to Wick's theorems in a normal product:

$$
G(J)=\operatorname{Tr}\left(N \left\{\exp \left[\frac{1}{2} \frac{\delta}{\delta \phi_{1}} \tilde{\Delta} \frac{\delta}{\delta \phi_{1}}+\frac{1}{2} \frac{\delta}{\delta \phi_{2}} \Delta \frac{\delta}{\delta \phi_{2}}+\frac{\delta}{\delta \phi_{1}} n \frac{\delta}{\delta \phi_{2}}\right]\right.\right.
$$

$\left.\left.\times\left.\exp \left[S_{J}\left(\phi_{2}\right)-\int_{t_{0}}^{t_{f}} L_{I}\left(\phi_{1}\right) d u+\int_{t_{0}}^{t_{f}} L_{I}\left(\phi_{2}\right) d u\right]\right|_{\phi_{i}=\hat{\phi}}\right\} e^{-\hat{L}_{0} t_{0}} \hat{\rho}_{0} e^{\hat{L}_{0} t_{0}}\right)$
$\hat{\phi}$ is a shorthand for the operators in \hat{L}_{I}. Definition of the T product fixes the ambiguity in the functional L_{I}. In QFT $\hat{L} \rightarrow-i(\hat{H}-\mu \hat{N}) / \hbar, \hat{\rho}_{0} \rightarrow e^{-(\hat{H}-\mu \hat{N}) / T} / Z_{G}$ yield finite-temperature Green functions and Keldysh graphs.

Generic functional representation

T products fuse due to Wick's theorems in a normal product:

$$
G(J)=\operatorname{Tr}\left(N \left\{\exp \left[\frac{1}{2} \frac{\delta}{\delta \phi_{1}} \tilde{\Delta} \frac{\delta}{\delta \phi_{1}}+\frac{1}{2} \frac{\delta}{\delta \phi_{2}} \Delta \frac{\delta}{\delta \phi_{2}}+\frac{\delta}{\delta \phi_{1}} n \frac{\delta}{\delta \phi_{2}}\right]\right.\right.
$$

$\left.\left.\times\left.\exp \left[S_{J}\left(\phi_{2}\right)-\int_{t_{0}}^{t_{f}} L_{I}\left(\phi_{1}\right) d u+\int_{t_{0}}^{t_{f}} L_{I}\left(\phi_{2}\right) d u\right]\right|_{\phi_{i}=\hat{\phi}}\right\} e^{-\hat{L}_{0} t_{0}} \hat{\rho}_{0} e^{\hat{L}_{0} t_{0}}\right)$
$\hat{\phi}$ is a shorthand for the operators in \hat{L}_{I}. Definition of the T product fixes the ambiguity in the functional L_{I}. In QFT $\hat{L} \rightarrow-i(\hat{H}-\mu \hat{N}) / \hbar, \hat{\rho}_{0} \rightarrow e^{-(\hat{H}-\mu \hat{N}) / T} / Z_{G}$ yield finite-temperature Green functions and Keldysh graphs. Separate evaluation of $\operatorname{Tr} e^{-\hat{L}_{0} t_{0}} \hat{\rho}_{0} e^{\hat{L}_{0} t_{0}} N[\ldots]$ for FPE and ME.

Functional representation for FPE

For any operator functional $F[\hat{\pi}, \hat{\varphi}]$ calculation yields

$$
\operatorname{Tr} e^{-\hat{L}_{0} t_{0}} \hat{\rho}_{0} e^{\hat{L}_{0} t_{0}} N\{F[\hat{\pi}, \hat{\varphi}]\}=\int \mathcal{D} \varphi p_{0}(\varphi) F[0, n \varphi],
$$

where $p_{0}(\varphi)=p\left(\varphi, t_{0}\right)$.

Functional representation for FPE

For any operator functional $F[\hat{\pi}, \hat{\varphi}]$ calculation yields

$$
\operatorname{Tr} e^{-\hat{L}_{0} t_{0}} \hat{\rho}_{0} e^{\hat{L}_{0} t_{0}} N\{F[\hat{\pi}, \hat{\varphi}]\}=\int \mathcal{D} \varphi p_{0}(\varphi) F[0, n \varphi],
$$

where $p_{0}(\varphi)=p\left(\varphi, t_{0}\right)$. Therefore

$$
\begin{aligned}
& G(J)=\int \mathcal{D} \varphi p_{0}(\varphi) \exp \left[\frac{\delta}{\delta \varphi_{1}} \tilde{\Delta} \frac{\delta}{\delta \pi_{1}}+\frac{\delta}{\delta \varphi_{2}} \Delta \frac{\delta}{\delta \pi_{2}}+\frac{\delta}{\delta \varphi_{1}} n \frac{\delta}{\delta \pi_{2}}\right] \\
& \times\left.\exp \left[\int_{t_{i}}^{t_{f}} d t \varphi_{2}(t) J(t)-\int_{t_{0}}^{t_{f}} L_{I}\left(\pi_{1}, \varphi_{1}\right) d t+\int_{t_{0}}^{t_{f}} L_{I}\left(\pi_{2}, \varphi_{2}\right) d t\right]\right|_{\substack{\pi_{i}=0 \\
\varphi_{i}=n \varphi}}
\end{aligned}
$$

Functional representation for FPE

For any operator functional $F[\hat{\pi}, \hat{\varphi}]$ calculation yields

$$
\operatorname{Tr} e^{-\hat{L}_{0} t_{0}} \hat{\rho}_{0} e^{\hat{L}_{0} t_{0}} N\{F[\hat{\pi}, \hat{\varphi}]\}=\int \mathcal{D} \varphi p_{0}(\varphi) F[0, n \varphi],
$$

where $p_{0}(\varphi)=p\left(\varphi, t_{0}\right)$. Therefore

$$
\begin{aligned}
& G(J)=\int \mathcal{D} \varphi p_{0}(\varphi) \exp \left[\frac{\delta}{\delta \varphi_{1}} \tilde{\Delta} \frac{\delta}{\delta \pi_{1}}+\frac{\delta}{\delta \varphi_{2}} \Delta \frac{\delta}{\delta \pi_{2}}+\frac{\delta}{\delta \varphi_{1}} n \frac{\delta}{\delta \pi_{2}}\right] \\
& \times\left.\exp \left[\int_{t_{i}}^{t_{f}} d t \varphi_{2}(t) J(t)-\int_{t_{0}}^{t_{f}} L_{I}\left(\pi_{1}, \varphi_{1}\right) d t+\int_{t_{0}}^{t_{f}} L_{I}\left(\pi_{2}, \varphi_{2}\right) d t\right]\right|_{\substack{\pi_{i}=0 \\
\varphi_{i}=n \varphi}}
\end{aligned}
$$

In the limit $t_{f} \rightarrow \infty, t_{i} \rightarrow-\infty$ we arrive at Keldysh rules.
Cancelation of closed propagator loops is produced by the auxiliary set of fields π_{1}, φ_{1}.

Functional integral for FPE

In first-order models closed loops of $\Delta, \tilde{\Delta}$ vanish. The contribution of fields π_{1}, φ_{1} is reduced to a constant:

$$
G(J)=\left.\int \mathcal{D} \varphi p_{0}(\varphi)\left[e^{\frac{\delta}{\delta \varphi_{2}} \Delta \frac{\delta}{\delta \pi_{2}}} e^{S_{I}\left(\pi_{2}, \varphi_{2}\right)+\varphi_{2} J}\right]\right|_{\substack{\pi=0 \\ \varphi_{2}=n \varphi}}
$$

Functional integral for FPE

In first-order models closed loops of $\Delta, \tilde{\Delta}$ vanish. The contribution of fields π_{1}, φ_{1} is reduced to a constant:

$$
G(J)=\left.\int \mathcal{D} \varphi p_{0}(\varphi)\left[e^{\frac{\delta}{\delta \varphi_{2}} \Delta \frac{\delta}{\delta \pi_{2}}} e^{S_{I}\left(\pi_{2}, \varphi_{2}\right)+\varphi_{2} J}\right]\right|_{\substack{\pi=0 \\ \varphi_{2}=n \varphi}}
$$

Introduce functional integral through the Gaussian trick

$$
e^{\frac{\delta}{\delta \varphi} \Delta \frac{\delta}{\delta \pi}}=\iint \mathcal{D} \phi \mathcal{D} \tilde{\phi} e^{-\tilde{\phi} \Delta^{-1} \phi+\tilde{\phi} \frac{\delta}{\delta \pi}+\phi \frac{\delta}{\delta \varphi}} .
$$

Functional integral for FPE

In first-order models closed loops of $\Delta, \tilde{\Delta}$ vanish. The contribution of fields π_{1}, φ_{1} is reduced to a constant:

$$
G(J)=\left.\int \mathcal{D} \varphi p_{0}(\varphi)\left[e^{\frac{\delta}{\delta \varphi_{2}} \Delta \frac{\delta}{\delta \pi_{2}}} e^{S_{I}\left(\pi_{2}, \varphi_{2}\right)+\varphi_{2} J}\right]\right|_{\varphi_{\varphi}=0}
$$

Introduce functional integral through the Gaussian trick

$$
e^{\frac{\delta}{\delta \varphi} \Delta \frac{\delta}{\delta \pi}}=\iint \mathcal{D} \phi \mathcal{D} \tilde{\phi} e^{-\tilde{\phi} \Delta^{-1} \phi+\tilde{\phi} \frac{\delta}{\delta \pi}+\phi \frac{\delta}{\delta \varphi}} .
$$

Obtain generating function of Martin-Siggia-Rose theory:

$$
G(J)=\iiint \mathcal{D} \varphi \mathcal{D} \phi \mathcal{D} \tilde{\phi} p_{0}(\varphi) e^{-\tilde{\phi}\left(\partial_{t}+K\right) \phi+S_{I}(\tilde{\phi}, \phi+n \varphi)+(\phi+n \varphi) J} .
$$

Functional integral for Schwinger-Keldysh

The functional L_{I} is quadratic in π. Therefore (constant b)

$$
\begin{aligned}
& G(J)=\iiint \mathcal{D} \varphi \mathcal{D} \eta_{1} \mathcal{D} \eta_{2} p_{0}(\varphi) \exp \left\{J\left(\Delta \eta_{2}+n \varphi\right)\right. \\
&+\frac{1}{2} \eta_{2} b D b \eta_{2}-\frac{1}{2} \eta_{1} b D b \eta_{1}+\eta_{1}(b D b)^{-1} U_{1}+\eta_{2}(b D b)^{-1} U_{2} \\
&\left.+\frac{1}{2} U_{1}(b D b)^{-1} U_{1}-\frac{1}{2} U_{2}(b D b)^{-1} U_{2}\right\},
\end{aligned}
$$

where $U_{1}=U\left(\tilde{\Delta} \eta_{1}+n \eta_{2}+n \varphi\right), U_{2}=U\left(\Delta \eta_{2}+n \varphi\right)$.

Functional integral for Schwinger-Keldysh

The functional L_{I} is quadratic in π. Therefore (constant b)

$$
\begin{aligned}
& G(J)=\iiint \mathcal{D} \varphi \mathcal{D} \eta_{1} \mathcal{D} \eta_{2} p_{0}(\varphi) \exp \left\{J\left(\Delta \eta_{2}+n \varphi\right)\right. \\
&+\frac{1}{2} \eta_{2} b D b \eta_{2}-\frac{1}{2} \eta_{1} b D b \eta_{1}+\eta_{1}(b D b)^{-1} U_{1}+\eta_{2}(b D b)^{-1} U_{2} \\
&\left.+\frac{1}{2} U_{1}(b D b)^{-1} U_{1}-\frac{1}{2} U_{2}(b D b)^{-1} U_{2}\right\},
\end{aligned}
$$

where $U_{1}=U\left(\tilde{\Delta} \eta_{1}+n \eta_{2}+n \varphi\right), U_{2}=U\left(\Delta \eta_{2}+n \varphi\right)$.
Cancelations are now explicit in the functional integral.

Functional integral for Schwinger-Keldysh

The functional L_{I} is quadratic in π. Therefore (constant b)

$$
\begin{aligned}
& G(J)=\iiint \mathcal{D} \varphi \mathcal{D} \eta_{1} \mathcal{D} \eta_{2} p_{0}(\varphi) \exp \left\{J\left(\Delta \eta_{2}+n \varphi\right)\right. \\
&+\frac{1}{2} \eta_{2} b D b \eta_{2}-\frac{1}{2} \eta_{1} b D b \eta_{1}+\eta_{1}(b D b)^{-1} U_{1}+\eta_{2}(b D b)^{-1} U_{2} \\
&\left.+\frac{1}{2} U_{1}(b D b)^{-1} U_{1}-\frac{1}{2} U_{2}(b D b)^{-1} U_{2}\right\},
\end{aligned}
$$

where $U_{1}=U\left(\tilde{\Delta} \eta_{1}+n \eta_{2}+n \varphi\right), U_{2}=U\left(\Delta \eta_{2}+n \varphi\right)$.
Cancelations are now explicit in the functional integral.
Should be more convenient numerically than use of ghosts.

Functional representation for ME

Generating function of Green functions of number density operators has a more complicated expression

$$
\begin{aligned}
& G(J)=\int \frac{d s}{2 \pi i} e^{s} \tilde{G}(s) \exp \left[\frac{\delta}{\delta a_{1}} \tilde{\Delta} \frac{\delta}{\delta a_{1}^{+}}+\frac{\delta}{\delta a_{2}} \Delta \frac{\delta}{\delta a_{2}^{+}}+\frac{\delta}{\delta a_{1}} n \frac{\delta}{\delta a_{2}^{+}}\right] \\
& \times \exp \left\{\int\left[-L_{I}\left(a_{1}^{+}+1, a_{1}\right)+L_{I}\left(a_{2}^{+}+1, a_{2}\right)\right] d t\right\} \\
& \times\left.\exp \left\{\int\left[\left(a_{2}^{+}(t)+1\right) a_{2}(t)\right] J(t) d t\right\}\right|_{\substack{a_{i}^{+}=0 \\
a_{i}=n s}},
\end{aligned}
$$

where

$$
\tilde{G}(s)=\sum_{n=1}^{\infty} \frac{\Gamma(n)}{s^{n}} P(0, n-1) .
$$

Conclusion

- Ambiguities in stochastic field theory both from ambiguity of SDE and ambiguity of functional representation.

Conclusion

- Ambiguities in stochastic field theory both from ambiguity of SDE and ambiguity of functional representation.
- Ambiguity of functional representation gives rise to the determinant problem.

Conclusion

- Ambiguities in stochastic field theory both from ambiguity of SDE and ambiguity of functional representation.
- Ambiguity of functional representation gives rise to the determinant problem.
- Unambiguous SDE: choice of either Ito or Stratonovich interpretation, use Fokker-Planck equation.

Conclusion

- Ambiguities in stochastic field theory both from ambiguity of SDE and ambiguity of functional representation.
- Ambiguity of functional representation gives rise to the determinant problem.
- Unambiguous SDE: choice of either Ito or Stratonovich interpretation, use Fokker-Planck equation.
- Unambiguous functional representation: definition of the T product at coinciding time arguments.

Conclusion

- Ambiguities in stochastic field theory both from ambiguity of SDE and ambiguity of functional representation.
- Ambiguity of functional representation gives rise to the determinant problem.
- Unambiguous SDE: choice of either Ito or Stratonovich interpretation, use Fokker-Planck equation.
- Unambiguous functional representation: definition of the T product at coinciding time arguments.
- Solution of the determinant problem with the aid of Schwinger-Keldysh approach.

Conclusion

- Ambiguities in stochastic field theory both from ambiguity of SDE and ambiguity of functional representation.
- Ambiguity of functional representation gives rise to the determinant problem.
- Unambiguous SDE: choice of either Ito or Stratonovich interpretation, use Fokker-Planck equation.
- Unambiguous functional representation: definition of the T product at coinciding time arguments.
- Solution of the determinant problem with the aid of Schwinger-Keldysh approach.
- Schwinger-Keldysh approach advantageous for numerical calculation.

