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Recently solved QM + QED (almost) textbook problem.

A.E.Shabad, V.V.Usov (2007,2008) - numerically;
M.I.Vysotsky, JETP Lett. 92 (2010)15;
B.Machet, M.I.Vysotsky, PR D 83 (2011)025022 -
analytically;

For this talk:

strong magnetic field: B > m2
ee

3

(Gauss units; e2 = α = 1/137);
Bcr = m2

e/e;
superstrong magnetic field: B > m2

e/e
3;

aH = 1/
√
eB - Landau radius, magnetic length.
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plan
D = 2 QED with massive fermions, radiative
“corrections” to Coulomb potential in d = 1; analytical
formula for Φ(z), g > m - photon “mass” mγ ∼ g,
screening at ALL z when g > m

D = 4 QED in external B, photon “mass” m2
γ = e3B at

superstrong magnetic fields B >> m2
e/e

3, analytical
formula for Φ(z)

Electron in magnetic field: LLL - nonrelativistic at all B

The Karnakov-Popov equation for atomic energies

Conclusions
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D = 2 QED: screening of Φ

Φ(k̄) ≡ A0(k̄) =
4πg

k̄2
; Φ ≡ A0 = D00 +D00Π00D00 + ...

...+++

Fig 1. Modification of the Coulomb potential due to the
dressing of the photon propagator.

Summing the series we get:

Φ(k) = − 4πg

k2 +Π(k2)
, Πµν ≡

(

gµν −
kµkν
k2

)

Π(k2)
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Π(k2) = 4g2

[

1
√

t(1 + t)
ln(

√
1 + t+

√
t)− 1

]

≡ −4g2P (t) ,

t ≡ −k2/4m2, [g] =mass.
Taking k = (0, k‖), k2 = −k2‖ for the Coulomb potential in the
coordinate representation we get:

Φ(z) = 4πg

∞
∫

−∞

eik‖zdk‖/2π

k2‖ + 4g2P (k2‖/4m
2)

,

and the potential energy for the charges +g and −g is
finally: V (z) = −gΦ(z) .
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Asymptotics of P (t) are:

P (t) =

{

2
3t , t≪ 1

1 , t≫ 1 .

Let us take as an interpolating formula for P (t) the following
expression:

P (t) =
2t

3 + 2t
.

The accuracy of this approximation is not worse than 10%
for the whole interval of t variation, 0 < t <∞.
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Φ = 4πg

∞
∫

−∞

eik‖zdk‖/2π

k2‖ + 4g2(k2‖/2m
2)/(3 + k2‖/2m

2)
=

=
4πg

1 + 2g2/3m2

∞
∫

−∞

[

1

k2‖
+

2g2/3m2

k2‖ + 6m2 + 4g2

]

eik‖z
dk‖
2π

= (1)

=
4πg

1 + 2g2/3m2

[

−1

2
|z|+ g2/3m2

√

6m2 + 4g2
exp(−

√

6m2 + 4g2|z|)
]

.

In the case of heavy fermions (m≫ g) the potential is given
by the tree level expression; the corrections are suppressed
as g2/m2.
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In case of light fermions (m≪ g):

Φ(z)

∣

∣

∣

∣

∣ m≪ g
=

{

πe−2g|z| , z ≪ 1
g ln

( g
m

)

−2πg
(

3m2

2g2

)

|z| , z ≫ 1
g ln

( g
m

)

.

m = 0 - Schwinger model; photon get mass.

Light fermions - continuous transition from m > g to m = 0.

Next two figures correspond to g = 0.5, m = 0.1:
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D = 4 QED in superstrong B

For B >> Bcr ≡ m2/e and moderate photon momentum
k2 . eB the following expression for polarization operator
was obtained long ago (Skobelev, 1975; Loskutov,
Skobelev, 1976):

Πµν ⋍ e3B ∗ exp(− k2⊥
2eB

) ∗ Π(2)
µν (k‖ ≡ kz);

Φ =
4πe

(k2‖ + k2⊥)
(

1− α
3π ln

(

eB
m2

))

+ 2e3B
π exp

(

− k2

⊥

2eB

)

P
(

k2

‖

4m2

) .
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Φ(z) =

= 4πe

∫

eik‖zdk‖d
2k⊥/(2π)3

k2‖ + k2⊥ + 2e3B
π exp(−k2⊥/(2eB))(k2‖/2m

2
e)/(3 + k2‖/2m

2
e)

,

Φ(z) =
e

|z|
[

1− e−
√
6m2

e|z| + e−
√

(2/π)e3B+6m2
e|z|

]

.

For magnetic fields B ≪ 3πm2/e3 the potential is Coulomb
up to small power suppressed terms:

Φ(z)

∣

∣

∣

∣

∣ e3B ≪ m2
e

=
e

|z|

[

1 +O

(

e3B

m2
e

)]

in full accordance with the D = 2 case, where g2 plays the
role of e3B.
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In the opposite case of superstrong magnetic fields
B ≫ 3πm2

e/e
3 we get:

Φ(z) =



















e
|z|e

(−
√

(2/π)e3B|z|), 1√
(2/π)e3B

ln
(√

e3B
3πm2

e

)

> |z| > 1√
eB

e
|z|(1− e(−

√
6m2

e|z|)), 1
m > |z| > 1√

(2/π)e3B
ln
(√

e3B
3πm2

e

)

e
|z| , |z| > 1

m

,

V (z) = −eΦ(z)
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Modified Coulomb potential at B = 1017G (blue) and its long
distance (green) and short distance (red) asympotics.
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Relative accuracy of analytical formula for modified
Coulomb potential at B = 1017G.
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electron in magnetic field
spectrum of Dirac eq in cylindrical coordinates (ρ̄, z) in the
gauge, where Ā = 1

2 [B̄r̄]:

ε2n = m2
e + p2z + (2nρ + |m|+m+ σz + 1)eB ,

nρ = 0, 1, 2, 3, ...; m = 0,±1,±2, ...; σz = ±1

for B > Bcr = m2
e/e the electrons are relativistic

with only one exception: electrons from lowest Landau level
(LLL: nρ = 0; m = 0,−1,−2, ...; σz = −1) can be
nonrelativistic.

In what follows we will study the spectrum of electrons from
LLL in the Coulomb field of the proton modified by the
superstrong B.

Spectrum of Schrödinger eq.:
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Epznρmσz
=

(

nρ +
|m|+m+ 1 + σz

2

)

eB

me
+

p2z
2me

,

LLL: nρ = 0, σz = −1,m = 0,−1,−2, ...

R0m(ρ̄) =
[

π(2a2H)1+|m|(|m|!)
]−1/2

ρ|m|e(imϕ−ρ2/(4a2

H)) ,

Now we should take into account electric potential of atomic
nuclei situated at ρ̄ = z = 0. For aH ≪ aB adiabatic
approximation is applicable and the wave function in the
following form should be looked for:

Ψn0m−1 = R0m(ρ̄)χn(z) ,

where χn(z) is the solution of the Schrödinger equation
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for electron motion along a magnetic field:
[

− 1

2m

d2

dz2
+ Ueff (z)

]

χn(z) = Enχn(z) .

Without screening the effective potential is given by the
following formula:

Ueff (z) = −e2
∫ |R0m(ρ)|2

√

ρ2 + z2
d2ρ ,

For |z| ≫ aH the effective potential equals Coulomb:

Ueff (z)

∣

∣

∣

∣

∣ z ≫ aH
= − e2

|z|
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and is regular at z = 0:

Ueff (0) ∼ − e2

|aH | .

Since Ueff (z) = Ueff (−z), the wave functions are odd or
even under reflection z → −z; the ground states (for
m = 0,−1,−2, ...) are described by even wave functions.
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Karnakov - Popov equation
It provides a several percent accuracy for the energies of
even states for B > 103(m2

ee
3).

Main idea: to integrate Sh eq with effective potential from
x = 0 till x = z, where aH << z << aB and to equate
obtained expression for χ′(z) to the logarithmic derivative of
Whittaker function - the solution of Sh eq with Coulomb
potential, which exponentially decreases at z >> aB:

2 ln

(

z

aH

)

+ ln 2− ψ(1 + |m|) +O(aH/z) =

2 ln

(

z

aB

)

+ λ+ 2 ln λ+ 2ψ

(

1− 1

λ

)

+ 4γ + 2 ln 2 + O(z/aB) ,

E = −(mee
4/2)λ2
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The energies of the odd states are:

Eodd = −mee
4

2n2
+O

(

m2
ee

3

B

)

, n = 1, 2, ... .

So, for superstrong magnetic fields B ∼ m2
e/e

3 the
deviations of odd states from the Balmer series are
negligible.
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Energies of even states; screening
When screening is taken into account an expression for
effective potential transforms into

Ũeff (z) = −e2
∫ |R0m(~ρ)|2

√

ρ2 + z2
d2ρ

[

1− e−
√
6m2

e z + e−
√

(2/π)e3B+6m2
e z
]

Usimpl(z) = −e2 1
√

a2H + z2

[

1− e−
√
6m2

e z + e−
√

(2/π)e3B+6m2
e z
]
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Eff potential - figures
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Effective potentials at B = 1017G
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KP equation with screening
The original KP equation for LLL splitting by Coulomb
potential:

ln(B/(m2
ee

3)) = λ+2 lnλ+2ψ

(

1− 1

λ

)

+ln 2+4γ+ψ(1+|m|) .

The modified KP equation, which takes screening into
account:

ln

(

B/(m2
ee

3)

1 +B/(3πm2
e/e

3)

)

= λ+ 2 lnλ+ 2ψ

(

1− 1

λ

)

+

+ ln 2 + 4γ + ψ(1 + |m|) ,

E = −(mee
4/2)λ2, for B → ∞ : λ→ 11.2, E0 → −1.7KeV .
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spectrum

n=1

n=2

n=3
n=4
n=5

odd
(Balmer)

m=−5m=−1

B −> infinity

−1

−.5
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−.3

−.1

Ry

−108

even

m=0 ......

−.7

−.8

−.6

−.2

−88

−126
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Conclusion

An algebraic formula for the energy levels of a hydrogen

atom originating from the lowest Landau level

in superstrong B has been obtained.
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backup slides
Landau radius aH versus B

Ba B cr α3   B  /π cr

.4.4 10
   13

aB

a  
H

1/me

1.1 10−12

2.4 109
5.7 1016

5.3 10−9

3.9 10−11

B (Gauss)

ScreeningCoulomb

only small modifications of hydrogen atom

electron becomes relativistic

except in lowest Landau level

(LLL)

analytical
calculation

without screening
(Karnakov−Popov)

numerical estimates

hydrogen atom becomes

strongly modified by B

with screening

analytical

with screening
calculation
numerical

calculation

(Machet−Vysotsky)

(Shabad−Usov)

(cm)
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The shallow-well approximation

Esw = −2me





aB
∫

aH

U(z)dz





2

= −(mee
4/2)ln2(B/(m2

ee
3))

Used to calculate the ground state energy of hydrogen in
strong B in LL QM (after 1974 editions); GKK; Shabad,
Usov.
Analogous formula for m 6= 0 published in 1971 by Barbieri.

− 1

2µ

d2

dz2
χ(z) + U(z)χ(z) = E0χ(z)

Neglecting E0 in comparison with U and integrating we get:
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χ′(a) = 2µ

a
∫

0

U(x)χ(x)dx ,

where we assume U(x) = U(−x), that is why χ is even.
The next assumptions are: 1. the finite range of the
potential energy: U(x) 6= 0 for a > x > −a; 2. χ undergoes
very small variations inside the well. Since outside the well

χ(x) ∼ e−
√

2µ|E0| x, we readily obtain:

|E0| = 2µ





a
∫

0

U(x)dx





2

.
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For
µ|U |a2 ≪ 1

(condition for the potential to form a shallow well) we get
that, indeed, |E0| ≪ |U | and that the variation of χ inside the
well is small, ∆χ/χ ∼ µ|U |a2 ≪ 1.
Concerning the one-dimensional Coulomb potential, it
satisfies this condition only for a≪ 1/(mee

2) ≡ aB.
This explains why the accuracy of log2 formula is very poor.
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spectrum
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B values
B > m2

ee
3 = 2.4 ∗ 109Gauss - strong B,

B > m2
e/e

3 = 6 ∗ 1015Gauss - superstrong B.

Bcr = m2
e/e = 4.4 ∗ 1013Gauss - critical B

B in laboratories:
106 − 107Gauss - magnetic cumulation, A.D.Saharov, 1952,
H ∗ r2 =const

Pulsars: B ∼ 1013Gauss; Magnetars: B ∼ 1015Gauss

Elliott, Loudon: excitons in semiconductors,
m∗ ≪ me, e∗ << e B > 2000 Gauss - strong B

superstrong B - graphene: m << me, α ∼ 1 ???
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potential, freezing of the energy of ground state for
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Coulomb potential screening and LLL spectrum.
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