A Few Lessons from QCD perturbative Analysis at Low Energies

[Divergent Series, Summation, Practical Alternatives]
Dmitry SHIRKOV

Bogoliubov Lab, JINR Dubna

Kazakov60 06/X '11

Power Series with Factorial Coefficients

Formal Divergent series
$F\left(\alpha_{s}\right) \sim \sum_{n} n!\left(\alpha_{s}\right)^{n}$
Finite Sum
$F_{K}\left(\alpha_{s}\right)=\sum_{n}^{K} f_{n} ;$
$f_{n}=n!\left(\alpha_{s}\right)^{n}$
Poincaré estimate
$\Delta F\left(\alpha_{s}\right) \sim f_{K}$

Optimal number of terms $K_{*} \sim 1 / \alpha_{s}$ for numerical estimation with lower limit of possible accuracy, $\mathbf{f}_{\mathbf{K}_{*}}$

4-loop Evidence from the Bjorken Sum Rule

 of the PT series "blow up" at $Q^{2} \lesssim 2-3 \mathrm{GeV}^{2}$ from [O.Teryaev, Khandramaj, Pasechnik, Solovtsova, D.Sh (2011)]

Relative weight of 1-, 2-, 3-, 4-loop terms.

Asympt.Series (AS) born by Essential Singularity $e^{-1 / g}$
The singularity is usual in Theory of Big Systems (representable via
Functional or Path Integral) :

- Turbulence
- Classic and Quantum Statistics
- Quantum Fields

Reason : small parameter $g \ll 1$ at nonlinear structure

- Energy Gap in SuperFluidity and SuperConductivity
- Tunneling in QM
- Quantum Fields (Dyson singularity), ...

Generally, a certain AsymptSeries can correspond to set of various functions.

> Their "summation" is an Art.

3- and 4-loop pQCD for Bjorken SumRule

Description of JLab data for the 1st moment Γ_{1}^{p-n} 4-loop fit is slightly worse than the 3-loop

Extracting $\Lambda_{Q C D}$ from Bjorken SR

Extracting $\Lambda_{Q C D}$ from 3- and 4-loop fits for JLab data
Again no profit from the 4-loop fit !

Comparing APT couplings with $\alpha_{s}\left(Q^{2}\right)$

Red line $\alpha_{A P T}(Q)$, black dash-dotted - $\tilde{\alpha}_{A P T}(\sqrt{s})$

Few Words about APT

"Analytic Perturbation Theory"(APT) in QCD, the closed theor. scheme [Solovtsov+Sh-90s] without Landau-poles and additional parameters. It stems from imperative of Q^{2}-analyticity and compatibility with linear integral (like,
Fourrier) transformations. Incorporates $e^{-1 / \alpha_{s}}$ (algebraic in Q^{2}) structures. Instead of power PT set $\bar{\alpha}_{s}\left(Q^{2}\right), \bar{\alpha}_{s}\left(Q^{2}\right)^{2}, \bar{\alpha}_{s}\left(Q^{2}\right)^{3}, \ldots$ one has non-power APT expansion set $\left\{\mathcal{A}_{k}\left(Q^{2}\right)\right\} k=1,2, \ldots$ with all $\mathcal{A}_{k}\left(Q^{2}\right)$ regular in the IR
$\mathcal{A}_{1}(Q)$ quantitatively corresponds to Lattice Simulation results down to $Q \sim 500 \mathrm{MeV}$ [+Slide with lattice results]

Lattice evidences for smooth $\alpha_{s}^{\text {latt }}$ behavior below 1 GeV
Asymptotic fit of α_{s}

α_{s} based on Three-gluon vertex
[P. Boucaud et al.,JHEP 0201, 046 (2002)]

α_{s} based on ghost-gluon vertex [from C.S. Fischer and R. Alkofer, Phys. Lett. B 536, 177 (2002)] Note the various IR behavior !!

The JLab-data Description by PT and by APT+HT

Anti-progress as 2- $\rightarrow 3-\rightarrow$ 4-loop below $Q<1 \mathrm{GeV}$

Higher Twists for PT and APT+HT

Table 1: HT extraction from JLab data on BSR in PT - uncertain?

PT	$Q_{m i n}^{2}$,	μ_{4} / M^{2}	μ_{6} / M^{4}	μ_{8} / M^{6}
NLO	0.5	$-0.028(5)$	-	-
$\mathrm{N}^{2} \mathrm{LO}$	0.66	$-0.014(7)$	-	-
$\mathrm{N}^{3} \mathrm{LO}$	0.66	$0.005(9)$	-	-

Table 2: HT extraction from JLab data in APT - stable!.

APT	$Q_{\min }^{2}, \mathrm{GeV}^{2}$	μ_{4} / M^{2}	μ_{6} / M^{4}	μ_{8} / M^{6}
NLO	0.078	$-0.061(4)$	$0.009(1)$	$-0.0004(1)$
N$^{2} \mathrm{LO}$	0.078	$-0.061(4)$	$0.009(1)$	$-0.0004(1)$
N 3 LO	0.078	$-0.061(4)$	$0.009(1)$	$-0.0004(1)$

On the $\left[Q^{2} \exp 1 / \alpha_{s}\right]$ structure

RG-invariance reduces the number of independent arguments

$$
f\left(Q^{2}, \alpha_{s}\right) \rightarrow F_{R G i n v}\left(\frac{1}{\alpha_{s}}+\beta_{0} \ln \left(\frac{Q^{2}}{\mu^{2}}\right)\right)=\tilde{F}_{R G}\left(\frac{Q^{2}}{\mu^{2}} e^{1 / \alpha_{s}}\right) ;
$$

together with Q^{2} analyticity yields one more statement on
inevitable not-perturb nature $\sim e^{-\frac{1}{\alpha_{s}}}$ of all algebraic -in Q^{2} - structures, like HT terms (and singularity-subtraction terms in APT)

Q- and s-dependence of APT functions

Loop dependence of $\alpha_{A P T}(Q)$ and $\tilde{\alpha}_{A P T}(s \quad$ Higher APT expansion functions [2 - and 3-loops are very close each other]
[All higher APT functions vanishes at IR limit]

Higher PT and APT contributions to observables

Relative contributions (in \%) of 1-, 2-, 3- and 4-loop terms

Process		Scale/Gev	$P T$ (in \%)				$A P T+H T^{*}$		
Bjorken SR	t	1	35	20	19	$\mathbf{2 6}$	80	19	1
Bjorken SR	t	1.78	56	21	13	$\mathbf{1 1}$	80	19	1
GLS SumRule	t	1.78	65	24	11		75	21	4
Incl. τ-decay	s	1.78	51	27	14	7	88	11	1

* The 4-loop APT contributions are negligible everywhere

Higher PT terms for $e^{+} e^{-} \rightarrow$ hadrons

Relative contributions of 1- ... 4-loop terms in $e^{+} e^{-} \rightarrow$ hadrons

Function	Scale/Gev	PT terms (in \%)				Comment
$\mathrm{r}(\mathrm{s})$	1	65	19	55	-39	$?!?$
$\mathrm{r}(\mathrm{s})$	1.78	73	13	24	-10	$?!?$
$\mathrm{~d}(\mathrm{Q})$	1	56	17	11	16	
$\mathrm{~d}(\mathrm{Q})$	1.78	75	14	6	5	

In the $r(s)$ higher PT coefficients -

- terrible effect of the π^{2} terms

Outlook and Appeal

I. Invitation for Work

- Methods of summation, including integral and conformal tricks,
- Devising Generating Function for HT terms
- Either generalizing minimal APT

Outlook and Appeal

I. Invitation for Work

- Methods of summation, including integral and conformal tricks,
- Devising Generating Function for HT terms
- Either generalizing minimal APT
II. Appeal for Speculating
- Toy models for the 4-loop term predicting for a process P_{i}
- Set of couplings $\alpha_{s}^{i}\left(Q^{2}\right)$ each adequate to the given process P_{i} ?
- Generating HT function for the each P_{i} ?

Theoretical prediction of higher coefficients

Nice old example: The $g \phi^{4}$ beta-function was known up to the $N^{3} L O$ term

$$
\beta_{\overline{\mathrm{MS}}}=\frac{3}{2} g^{2}-\frac{17}{6} g^{3}+16.27 g^{4}-135.8 g^{5}
$$

The Kazakov-Sh.-80 "summed" expression by Conform-Borel method

$$
\begin{gather*}
\beta_{\mathrm{MS}}^{\mathrm{MS}}(g)=\int_{0}^{\infty} \frac{d x}{g} e^{-x / g}\left(\frac{d}{d x}\right)^{5} B(x) \quad \text { with } \tag{1}\\
B(x)=a x^{2}\left(1-b_{2} w+\cdots-b_{4} w^{3}\right) ; \quad w(x)-\text { conform variable }
\end{gather*}
$$

contains $N^{4} L O$ term $\beta_{6}^{C B}=1409.6$.

Theoretical prediction of higher coefficients

Nice old example: The $g \phi^{4}$ beta-function was known up to the $N^{3} L O$ term

$$
\beta_{\overline{\mathrm{MS}}}=\frac{3}{2} g^{2}-\frac{17}{6} g^{3}+16.27 g^{4}-135.8 g^{5}
$$

The Kazakov-Sh.-80 "summed" expression by Conform-Borel method

$$
\begin{gather*}
\beta_{\mathrm{MS}}^{\mathrm{MS}}(g)=\int_{0}^{\infty} \frac{d x}{g} e^{-x / g}\left(\frac{d}{d x}\right)^{5} B(x) \quad \text { with } \tag{2}\\
B(x)=a x^{2}\left(1-b_{2} w+\cdots-b_{4} w^{3}\right) ; \quad w(x)-\text { conform variable }
\end{gather*}
$$

contains $N^{4} L O$ term $\beta_{6}^{C B}=1409.6$. Soon, it was calculated directly (with Dmitrii Kazakov participation) $\beta_{6}=1420.6$ via Feynman diagrams . Comparing gives the accuracy of the (2) prediction - within 1% !!

Theoretical prediction of higher coefficients

Nice old example: The $g \phi^{4}$ beta-function was known up to the $N^{3} L O$ term

$$
\beta_{\overline{\mathrm{MS}}}=\frac{3}{2} g^{2}-\frac{17}{6} g^{3}+16.27 g^{4}-135.8 g^{5}
$$

The Kazakov-Sh.-80 "summed" expression by Conform-Borel method

$$
\begin{gather*}
\beta_{\mathrm{MS}}^{\mathrm{MS}}(g)=\int_{0}^{\infty} \frac{d x}{g} e^{-x / g}\left(\frac{d}{d x}\right)^{5} B(x) \quad \text { with } \tag{3}\\
B(x)=a x^{2}\left(1-b_{2} w+\cdots-b_{4} w^{3}\right) ; \quad w(x)-\text { conform variable }
\end{gather*}
$$

contains $N^{4} L O$ term $\beta_{6}^{C B}=1409.6$. Soon, it was calculated directly (with Dmitrii Kazakov participation) $\beta_{6}=1420.6$ via Feynman diagrams Comparing gives the accuracy of the (2) prediction - within $1 \%!!$

Congratulations just on the Dmitrii 60-birthday

