A Few Lessons from QCD perturbative Analysis at Low Energies

[Divergent Series, Summation, Practical Alternatives]

Dmitry SHIRKOV

Bogoliubov Lab, JINR Dubna

KazakovLX 06/X '11

Power Series with Factorial Coefficients

KazakovLX 06/X '11

Optimal number of terms $K_* \sim 1/\alpha_s$ for numerical estimation with lower limit of possible accuracy, $\mathbf{f}_{\mathbf{K}_*}$

 \boldsymbol{k}

4-loop Evidence from the Bjorken Sum Rule

of the PT series "blow up" at $Q^2 \lesssim 2 - 3 ext{GeV}^2$ from

[O.Teryaev, Khandramaj, Pasechnik, Solovtsova, D.Sh (2011)]

Relative weight of 1-, 2-, 3-, 4-loop terms.

KazakovLX 06/X '11

Asympt.Series (AS) born by Essential Singularity $e^{-1/g}$

The singularity is usual in Theory of Big Systems (representable via Functional or Path Integral) :

- Turbulence
- Classic and Quantum Statistics
- Quantum Fields

Reason : small parameter $g \ll 1$ at nonlinear structure

- Energy Gap in SuperFluidity and SuperConductivity
- Tunneling in QM
- Quantum Fields (Dyson singularity), ...

Generally, a certain AsymptSeries can correspond to set of various functions.

Their "summation" is an Art.

KazakovLX 06/X '11

3- and **4-loop pQCD** for **Bjorken SumRule**

Extracting Λ_{QCD} from Bjorken SR

Extracting Λ_{QCD} from 3- and 4-loop fits for JLab data

Again no profit from the 4-loop fit !

Comparing APT couplings with $\alpha_s(Q^2)$

Red line $\alpha_{APT}(Q)$, black dash-dotted - $\tilde{\alpha}_{APT}(\sqrt{s})$

KazakovLX 06/X '11

Few Words about APT

"Analytic Perturbation Theory"(APT) in QCD, the closed theor. scheme [Solovtsov+Sh-90s] without Landau-poles and additional parameters. It stems from imperative of Q^2 -analyticity and compatibility with linear integral (like, Fourrier) transformations. Incorporates e^{-1/α_s} (algebraic in Q^2) structures.

Instead of power PT set $\bar{\alpha}_s(Q^2)$, $\bar{\alpha}_s(Q^2)^2$, $\bar{\alpha}_s(Q^2)^3$,... one has

non-power APT expansion set $\{A_k(Q^2)\} k = 1, 2, ...$ with all $A_k(Q^2)$ regular in the IR

 $\mathcal{A}_1(Q) \text{ quantitatively corresponds to Lattice Simulation results down}$ to $Q\sim 500 {\rm MeV}$ [+Slide with lattice results]

Lattice evidences for smooth α_s^{latt} behavior below 1 GeV

Note the various IR behavior !!

KazakovLX 06/X '11

The JLab-data Description by PT and by APT+HT

KazakovLX 06/X '11

Higher Twists for PT and APT+HT

 Table 1: HT extraction from JLab data on BSR in PT - uncertain ?

PT	$Q_{min}^2,$	μ_4/M^2	μ_6/M^4	μ_8/M^6
NLO	0.5	-0.028(5)		
N^2LO	0.66	-0.014(7)		—
N ³ LO	0.66	0.005(9)		_

 Table 2: HT extraction from JLab data in APT – stable !.

APT	$Q^2_{min}, {\sf GeV}^2$	μ_4/M^2	μ_6/M^4	μ_8/M^6
NLO	0.078	-0.061(4)	0.009(1)	-0.0004(1)
N^2LO	0.078	-0.061(4)	0.009(1)	-0.0004(1)
N ³ LO	0.078	-0.061(4)	0.009(1)	-0.0004(1)

On the $[Q^2 exp1/\alpha_s]$ structure

RG-invariance reduces the number of independent arguments

$$f(Q^2, \alpha_s) \to F_{RGinv}(\frac{1}{\alpha_s} + \beta_0 \ln\left(\frac{Q^2}{\mu^2}\right)) = \tilde{F}_{RG}\left(\frac{Q^2}{\mu^2}e^{1/\alpha_s}\right);$$

together with Q^2 analyticity yields one more statement on inevitable not-perturb nature $\sim e^{-\frac{1}{\alpha_s}}$ of all algebraic -in Q^2 - structures, like HT terms (and singularity-subtraction terms in APT)

Q- and s-dependence of APT functions

Loop dependence of $\alpha_{APT}(Q)$ and $\tilde{\alpha}_{APT}(s)$

[2- and 3-loops are very close each other]

Higher APT expansion functions

[All higher APT functions vanishes at IR limit]

Higher PT and APT contributions to observables

Relative contributions (in %) of 1–, 2–, 3– and 4–loop terms

Process		Scale/Gev	PT(in %)				APT+HT*		
Bjorken SR	t	1	35	20	19	26	80	19	1
Bjorken SR	t	1.78	56	21	13	11	80	19	1
GLS SumRule	t	1.78	65	24	11		75	21	4
Incl. $ au$ -decay	S	1.78	51	27	14	7	88	11	1

* The 4-loop APT contributions are negligible everywhere

KazakovLX 06/X '11

Higher PT terms for $e^+e^- \rightarrow hadrons$

Relative contributions of 1- ... 4–loop terms in $e^+e^- \rightarrow {\rm hadrons}$

Function	Scale/Gev	PT	tern	Comment		
r(s)	1	65	19	55	-39	?!?
r(s)	1.78	73	13	24	-10	?!?
d(Q)	1	56	17	11	16	
d(Q)	1.78	75	14	6	5	

In the r(s) higher PT coefficients – — terrible effect of the π^2 terms

Outlook and Appeal

I. Invitation for Work

- Methods of summation, including integral and conformal tricks,
- Devising Generating Function for HT terms
- Either generalizing minimal APT

Outlook and Appeal

I. Invitation for Work

- Methods of summation, including integral and conformal tricks,
- Devising Generating Function for HT terms
- Either generalizing minimal APT

II. Appeal for Speculating

- Toy models for the 4-loop term predicting for a process P_i
- Set of couplings $\alpha_s^i(Q^2)$ each adequate to the given process P_i ?
- Generating HT function for the each P_i ?

Theoretical prediction of higher coefficients

Nice old example: The $g \phi^4$ beta-function was known up to the N^3LO term $\beta_{\overline{MS}} = \frac{3}{2}g^2 - \frac{17}{6}g^3 + 16.27g^4 - 135.8g^5$

The Kazakov-Sh.-80 "summed" expression by Conform-Borel method

$$\beta_{\overline{\mathrm{MS}}}^{CB}(g) = \int_0^\infty \frac{dx}{g} e^{-x/g} \left(\frac{d}{dx}\right)^5 B(x) \quad \text{with} \tag{1}$$
$$B(x) = a \, x^2 (1 - b_2 w + \dots - b_4 w^3); \quad w(x) - \text{conform variable}$$

contains N^4LO term $\beta_6^{CB} = 1409.6$.

Theoretical prediction of higher coefficients

Nice old example: The $g \phi^4$ beta-function was known up to the N^3LO term $\beta_{\overline{MS}} = \frac{3}{2}g^2 - \frac{17}{6}g^3 + 16.27g^4 - 135.8g^5$

The Kazakov-Sh.-80 "summed" expression by Conform-Borel method

$$\beta_{\overline{\mathrm{MS}}}^{CB}(g) = \int_0^\infty \frac{dx}{g} e^{-x/g} \left(\frac{d}{dx}\right)^5 B(x) \quad \text{with} \tag{2}$$
$$B(x) = a \, x^2 (1 - b_2 w + \dots - b_4 w^3); \quad w(x) - \text{conform variable}$$

contains N^4LO term $\beta_6^{CB} = 1409.6$. Soon, it was calculated directly (with Dmitrii Kazakov participation) $\beta_6 = 1420.6$ via Feynman diagrams. Comparing gives the accuracy of the (2) prediction – within 1 % !!

Theoretical prediction of higher coefficients

Nice old example: The $g \phi^4$ beta-function was known up to the N^3LO term $\beta_{\overline{MS}} = \frac{3}{2}g^2 - \frac{17}{6}g^3 + 16.27g^4 - 135.8g^5$

The Kazakov-Sh.-80 "summed" expression by Conform-Borel method

$$\beta_{\overline{\mathrm{MS}}}^{CB}(g) = \int_0^\infty \frac{dx}{g} e^{-x/g} \left(\frac{d}{dx}\right)^5 B(x) \quad \text{with} \tag{3}$$
$$B(x) = a \, x^2 (1 - b_2 w + \dots - b_4 w^3); \quad w(x) - \text{conform variable}$$

contains N^4LO term $\beta_6^{CB} = 1409.6$. Soon, it was calculated directly (with Dmitrii Kazakov participation) $\beta_6 = 1420.6$ via Feynman diagrams. Comparing gives the accuracy of the (2) prediction – within 1 % !!

Congratulations just on the Dmitrii 60-birthday