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Supersymmetry

Supersymmetric gauge theories in four dimensions:
N = 1, N = 2 and N = 4?

• N = 1 is “realistic” ... roughly - almost nothing is known,
physically - counting of vacua (determined by F -terms;

• N = 4 - “everything” is known, called even “exactly soluble”,
but ... lack of physical questions in conformal theories,
frozen coupling.
Certainly - nice as a theory in UV;



• N = 2 - “happy medium”: still a little is known - but these
are important answers to certain questions about quantum
dynamics at strong coupling ...

• Couplings - holomorphic functions of vacuum condensates,
not frozen, but fixed by complex geometry.

A partial reason for this - “multiple” relations with low-dimensional
(holomorphic) theories.



N = 2 supersymmetric QCD:

• Adjoint vector multiplet: A = Aµdxµ, Φ; (λα, ψα), all matrices
N ×N , N = # of colours. Gauge field necessarily requires
adjoint (complex!) scalar;

• Fundamental matter (scalar quarks): Qf , Q̃f , (qfα, q̃αf ) with
masses mf ; f = 1, . . . , Nf = # of flavors

Scalars can condense:
If ⟨Φ⟩ ̸= 0: the Coulomb or Abelian gauge theory in IR;
If ⟨Q̃Q⟩ ̸= 0: gauge group is (totally) “Higgsed”, as in superconductor.



Coulomb phase:
⟨Φ⟩ = diag(a1, . . . , aN), [A,Φ]ij = Aij(ϕi−ϕj), U(N) → U(1)N .

Scalars cause monopole (and string) solutions: there are the
(BPS) monopoles in the spectra:

MBPS ∼ |Zγ(a)| (1)

complex BPS masses, given by the central charges of N = 2

SUSY algebra, γ - an element of charge’s lattice.

Dirac quantization - symplectic pairing on BPS charges

γ = (n,m), γ ◦ γ′ = n ·m′ −m · n′ = −γ′ ◦ γ (2)

measures non-locality. (n,m) - electric and magnetic charges
(w.r.t. many U(1) factors)



Nontrivial IR dynamics: U(N) SQCD in UV

LUV = Tr

(
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8π2

F ∧ F . . .
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(3)

flows to the IR Abelian effective theory (i, j = 1, . . . , N):

LIR ∼ Im Tij(a) F
i
µνF
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β = 2Nc − Nf is 1-loop (perturbatively exact) beta function,
corrected by (!?) instantons.



N = 2 SUSY: the holomorphic prepotential Tjk = ∂2F
∂aj∂ak

FUV = 1
2τ0

∑
i

a2i → FIR = F(a)
?
= FUV + Fpert + Finst (5)

where τ0 = θ0
2π + 4πi

g20
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θjk(a)
2π + 4πi
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, QFT gives
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∼ β log
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Λ

+ . . . (6)

and the perturbative formula must be corrected, when
MW = |ai − aj| . Λ.

Advanced QFT:
Already the relation Tij = ∂2F

∂ai∂aj
can be called an integrable

system, an equation in special variables - special geometry.



Special variables a = (a1, . . . , aN−1) from the BPS mass formula:

Zγ =
∮
γ
z
dw

w
= na+maD(+Bfmf)

γ = nA+mB, Ai ◦Bj = −Bj ◦Ai = δij

Σ : ΛN
(
w+

1

w

)
= ⟨det(z −Φ)⟩

(7)

Dirac pairing of charges γi ◦ γj: intersection form of the cycles
on Riemann surface Σ, charges are measured by cycles

µi ·αj = δij = Ai ◦Bj (8)

though in physical convention |µ| ̸= |α|.

In geometric normalization - no fractional charges!



An integrable system: period matrix

ai =
∮
Ai
z
dw

w
, aDi =

∮
Bi
z
dw

w

aDi =
∂F
∂ai

, Tij =
∂aDi
∂aj

=
∂2F
∂ai∂aj

(9)

integrability condition, and no problems with the positivity

Im Tij(a) ≥ 0,

Tij(a) =
|a|≫Λ

iβ
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log
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Λ
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with

β = 2N −Nf =
pure gauge

2N (11)

for U(N) → U(1)N effective gauge theory.



How to compute the non-perturbative (instanton) corrections
to the perturbative logarithm?

• No honest way in four-dimensional theory (divergent integrals,
how to fix?);

• Nekrasov functions: integrals over moduli spaces of instantons
after two-parametric ϵ-deformation (IR regularization)

Finst(a) = ϵ1ϵ2 logZinst(a; ϵ1,2)
∣∣∣
ϵ1,2=0 (12)

• A way from two-dimensions: representation theory of (extended)
Virasoro algebra.



4d → 2d:

• From two-dimensional conformal theory: conformal blocks
and/or “coherent” or Whittaker states;

• Conformal blocks (two-dimensions) for conformal (four-
dimensional) theory, coherent states - for the pure gauge.

Example N = 1: [α, α†] = 1, t = logΛ2, ϵ1 = −ϵ2 = 1,
introduce

α|0⟩ = 0, H =
⊕
n≥0

(α†)n√
n!

|0⟩

|Ψ⟩ ∈ H : α|Ψ⟩ = |Ψ⟩
(13)



Then

Zinst = ⟨Ψ|etα
†α|Ψ⟩ = ee

t
= eFinst

F(a, t) = FUV + Finst =
1
2a

2t+ et
(14)

no perturbative corrections - no nontrivial flows in U(1) gauge
theory.

• Summation over instantons in 4d from matrix elements of
coherent states (towards 2d bosons/fermions, 2d CFT);

• An integrable system: ∂2F
∂t2

= exp ∂2F
∂a2

- the famous Toda
equation (exponential potential).



Free two-dimensional scalar field (massless ≡ conformal) with
the holomorphic spin-1 current

J(w) = i∂ϕ(w) =
∑
n∈Z

Jn

wn+1
, [Jn, Jm] = nδn+m,0 (15)

and holomorphic spin-2 stress tensor (Virasoro algebra with
c = 1)

T (w) = −1
2 (∂ϕ)2 =

∑
n∈Z

Ln

wn+2

[Ln, Lm] = (n−m)Ln+m+
c

12
(n3 − n)δn+m,0

(16)

Then (|0a⟩ : J0|0a⟩ = a|0a⟩)

|Ψ⟩ = eα
†
|0a⟩ = eJ−1|0a⟩, J1|Ψ⟩ = |Ψ⟩

Z = ⟨Ψ|Λ2L0|Ψ⟩ = eta
2/2⟨Ψ|etα

†α|Ψ⟩ = eF
(17)



Pure U(N) gauge theory: coherent state for (spin K = 1,2, . . . , N

extended Virasoro W(K)(z) =
∑
n∈Z

W(K)
n

wn+K
) WN-algebra:

W(N)
1 |Ψ⟩ = |Ψ⟩

W(N)
n |Ψ⟩ = 0, n > 1, W(K)

n |Ψ⟩ = 0, n > 0, K < N
(18)

in the representation with “vacuum”

W(K)
0 |0a⟩ ∼

N∑
j=1

aKj |0a⟩, K = 1, . . . , N (19)

Integrable system: the curve Σ is (D|Ψ⟩ = z
w|Ψ⟩)

⟨Ψ|DN |Ψ⟩ = 0

DN ≡ DN − T (w)DN−2 − . . .−W(N)(w)
(20)



One gets the computation of the instanton expansion in four-
dimensional theory from two dimensions:

Z = ⟨Ψ|Λ2NL0|Ψ⟩ (21)

e.g. for pure U(2) gauge theory (∆ ∼ a2)

L1|Ψ⟩ = |Ψ⟩, Ln|Ψ⟩ = 0, n ≥ 2

|Ψ⟩ =
∑
k≥0

∑
|Y |=k

Q−1
∆ (1k, Y )|a;Y ⟩

Z = Zpert⟨Ψ|Λ4L0|Ψ⟩ = Zpert
∑
k≥0

Λ4kQ−1
∆ (1k,1k)

(22)

i.e. the instanton function is expressed through the inverse
scalar product Q(•, •) in the Virasoro representation between
the states |1k⟩ = Lk−1|0a⟩ = Lk−1|a; ∅⟩.



Therefore, the contribution of the instanton charge k sector,
e.g.

Z
(k)
inst = Q−1

∆ (1k,1k) (23)

in U(2) case - is totally expressed in terms of (the Virasoro)
representation theory in two dimensions. Can be easily performed
analytically on computer for any topological charge k ...

Hence, 4d −→ 2d (holomorphic N = 2 −→ CFT) is quite
effective ...

More: an integrable system 4d −→ 1d - finite-dimensional
integrable models - like Toda theories ...



4d → 1d

The Toda integrable systems, described by a quiver
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∑
k

Li2
(
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) (24)

quiver variables through di-Logarithm Li′2(t) = log(1 + t).



Integrals of motion: “good functions” w.r.t. quiver mutations
- rational transformations of variables preserving the Poisson
(symplectic) structure.

The same mutations preserve the Dirac pairing γi ◦ γj, and
generate the “full” stable BPS spectrum of N = 2 supersymetric
gauge theory:

γ̃i = −γi

γ̃j = γj +

{
(γi ◦ γj)γi, γi ◦ γj > 0

0, γi ◦ γj < 0
, j ̸= i

(25)

At strong coupling there is always a chamber with finitely many
stable BPS states!



E.g. SU(2) pure SYM, at strong coupling the W -boson

γ = (2,0) = (2,−1) + (0,1) = γD + γm (26)

is not stable, contrary to the weak coupling, separated by wall
Im(aD/a) = 0.

Conclusions

• Exact results in 4d N = 2 supersymmetric QCD are cause
by the properties borrowed from low-dimensional theories;

• 2d is almost always easier than 4d, (and 1d - even easier
than 2d). It may help more in the future...



Дима,
Будь здоров!


