Instantons and NS-conformal field theory

A. Belavin
based on joint work with Vladimir Belavin and Mikhail Bershtein

6 October 2011

Alday, Gaiotto and Tachikawa (2009) proposed correspondence
$\mathcal{N}=2$ SUSY $4 d$ Gauge theories $\longleftrightarrow 2 d$ Conformal field theories

$$
\sum_{Y, Y^{\prime}} q^{|Y|+\left|Y^{\prime}\right|} Z_{Y, Y^{\prime}}=(1-q)^{a_{1} a_{3}} F_{\Delta}\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4} \mid q\right),
$$

$\sum_{Y, Y^{\prime}} q^{|Y|+\left|Y^{\prime}\right|} Z_{Y, Y^{\prime}}-$ Instanton partition function.
$F_{\Delta}\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4} \mid q\right)$ - Conformal block of Liouville field theory.

Right hand side

Virasoro algebra.

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{n^{3}-n}{12} c \delta_{n,-m}
$$

Verma module generated by $|\Delta\rangle$ such that

$$
L_{0}|\Delta\rangle=\Delta|\Delta\rangle, \quad L_{k}|\Delta\rangle=0, \quad \text { for } k>0
$$

The chain of vectors $|N\rangle_{\Delta_{1}, \Delta_{2}, \Delta}$ defined as

$$
\begin{gathered}
L_{0}|N\rangle_{\Delta_{1}, \Delta_{2}, \Delta}=(\Delta+N)|N\rangle_{\Delta_{1}, \Delta_{2}, \Delta}, \\
L_{k}|N\rangle_{\Delta_{1}, \Delta_{2}, \Delta}=\left(\Delta+k \Delta_{1}-\Delta_{2}+k\right)|N-k\rangle_{\Delta_{1}, \Delta_{2}, \Delta}, \quad k>0
\end{gathered}
$$

conformal block:

$$
\left.F_{\Delta}\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4} \mid q\right)=\sum_{N} \Delta_{1}, \Delta_{2}, \Delta|N| N\right\rangle_{\Delta_{3}, \Delta_{4}, \Delta} q^{N}
$$

ADHM date consist of $N \times N$ matrices B_{1}, B_{2}, a $N \times 2$ matrix I and a $2 \times N$ matrix J, which are subject of the following set of conditions:

$$
\left[B_{1}, B_{2}\right]+I J=0
$$

The solutions related by $G L(N)$ transformations

$$
B_{i}^{\prime}=g B_{i} g^{-1}, \quad I^{\prime}=g I, \quad J^{\prime}=J g^{-1} ; \quad g \in G L(N)
$$

are equivalent.
Among vectors obtained by the repeated action of B_{1} and B_{2} on $I_{1,2}$ (columns of the matrix I), there exist N linear independent, which span N-dimensional vector space V, a fiber of the N-dimensional fiber bundle, whose base is the moduli space \mathcal{M}_{N} itself. The construction of the instanton partition function involves the determinants of the vector field v on \mathcal{M}_{N}, defined by

$$
B_{l} \rightarrow t_{l} B_{l} ; \quad I \rightarrow I t_{v} ; \quad J \rightarrow t_{1} t_{2} t_{v}^{-1} J,
$$

where parameters $t_{l} \equiv \exp \epsilon_{l} \tau, l=1,2$ and $t_{v}=\exp a \sigma_{3} \tau$.

Fixed points, labeled by pairs of Young diagrams $\left(Y_{1}, Y_{2}\right)$ such that the total number of boxes $\left|Y_{1}\right|+\left|Y_{2}\right|=N$. To the cells $\left(i_{1}, j_{1}\right) \in Y_{1}$ and $\left(i_{2}, j_{2}\right) \in Y_{2}$ correspond vectors $B_{1}^{i_{1}} B_{2}^{j_{1}} I_{1}$ and $B_{1}^{i_{2}} B_{2}^{j_{2}} I_{2}$ respectively.

$$
\begin{aligned}
\operatorname{det} v & =\frac{\prod_{s, s^{\prime} \in \vec{Y}}\left(\epsilon_{1}+\phi_{s^{\prime}}-\phi_{s}\right)\left(\epsilon_{2}+\phi_{s^{\prime}}-\phi_{s}\right) \prod_{l=1,2 ; s \in \vec{Y}}\left(a_{l}-\phi_{s}\right)\left(\epsilon_{1}+\epsilon_{2}-a_{l}+\phi_{s}\right)}{\prod_{s, s^{\prime} \in \vec{Y}}\left(\phi_{s^{\prime}}-\phi_{s}\right)\left(\epsilon_{1}+\epsilon_{2}-\phi_{s^{\prime}}+\phi_{s}\right)} \\
\operatorname{det} v & =\prod_{\alpha, \beta=1}^{2} \prod_{s \in Y_{\alpha}} E\left(a_{\alpha}-a_{\beta}, Y_{\alpha}, Y_{\beta} \mid s\right)\left(Q-E\left(a_{\alpha}-a_{\beta}, Y_{\alpha}, Y_{\beta} \mid s\right)\right),
\end{aligned}
$$

here $E\left(a, Y_{1}, Y_{2} \mid s\right)$ are defined as follows

$$
E\left(a, Y_{1}, Y_{2} \mid s\right)=a+\epsilon_{1}\left(L_{Y_{1}}(s)+1\right)-\epsilon_{2} A_{Y_{2}}(s)
$$

where $A_{Y}(s)$ and $L_{Y}(s)$ are respectively the arm-length and the leg-length for a cell s in Y.

$$
Z^{\mathrm{vec}}(\vec{a}, \vec{Y}) \equiv \frac{1}{\operatorname{det} v}
$$

Z_{f} defined in terms of vector bundle V. The answer reads

$$
Z_{\mathrm{f}}\left(\mu_{i}, \vec{a}, \vec{Y}\right)=\prod_{i=1}^{4} \prod_{\alpha=1}^{2} \prod_{s \in Y_{\alpha}}\left(\phi\left(a_{\alpha}, s\right)+\mu_{i}\right)
$$

where

$$
\begin{gathered}
\phi\left(a_{\alpha}, s\right)=\left(i_{s}-1\right) \epsilon_{1}+\left(j_{s}-1\right) \epsilon_{2}+a_{p(s)}+a_{i}-a_{\alpha} . \\
Z_{\vec{Y}}=\frac{Z_{\mathrm{f}}\left(\mu_{i}, \vec{a}, \vec{Y}\right)}{Z_{\text {vec }}(\vec{a}, \vec{Y})}
\end{gathered}
$$

AFLT proof

Alba, Fateev, Litvinov, Tarnopolsky proved (and may be explained) AGT relation in terms of algebra $\mathcal{A}=\operatorname{Vir} \otimes \mathcal{B}$

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[a_{n}, a_{m}\right] } & =\frac{n}{2} \delta_{n+m, 0}, \quad\left[a_{n}, L_{m}\right]=0 \\
c & =1+6 Q^{2}, \quad Q=b+b^{-1}
\end{aligned}
$$

There exists a unique orthogonal basis $|P\rangle_{\vec{Y}}$, such that

$$
\frac{\vec{Y}^{\prime}\left\langle P^{\prime}\right| V_{\alpha}(z=1)|P\rangle_{\vec{Y}}}{\left\langle P^{\prime}\right| V_{\alpha}(z=1)|P\rangle}=\mathcal{F}_{\vec{Y}}^{\vec{Y}^{\prime}}\left(\alpha \mid P, P^{\prime}\right)=\mathcal{F}_{Y_{1} Y_{2}}^{Y_{1}^{\prime} Y_{2}^{\prime}}\left(\alpha \mid P, P^{\prime}\right)
$$

have a factorized form

$$
\begin{aligned}
\mathcal{F}_{\vec{Y}^{\prime}}^{\overrightarrow{ }^{\prime}}\left(\alpha \mid P, P^{\prime}\right)=\prod_{i, j=1}^{2} \prod_{s \in Y_{i}}\left(Q-E_{Y_{i}, Y_{j}^{\prime}}\right. & \left.\left(P_{i}-P_{j}^{\prime} \mid s\right)-\alpha\right) \times \\
& \times \prod_{t \in Y_{j}^{\prime}}\left(E_{Y_{j}^{\prime} Y_{i}}\left(P_{j}^{\prime}-P_{i} \mid t\right)-\alpha\right)
\end{aligned}
$$

in particular

$$
\vec{Y}^{\prime}\langle P \mid P\rangle_{\vec{Y}}=\delta_{\vec{Y}, \vec{Y}^{\prime}}=Z^{\text {vec }}(\vec{P}, \vec{Y})
$$

Z_{2} invariant moduli space

The construction of NS-CFT generalization of AGT is based on the conjectural relation between moduli spaces of $S U(2)$ instantons on $\mathbb{R}^{4} / \mathbb{Z}_{2}$ and algebras like $\widehat{g l}(2)_{2} \times \mathcal{N S R}$. This conjecture is confirmed by checking the coincidence of number of fixed points on such instanton moduli space with given instanton number N and dimension of subspace degree N in the representation of such algebra.

The subspace of the Moduli space $\mathcal{M}^{\mathbb{Z}_{2}}$ for $S U(2)$ gauge group is defined by the following additional restriction of \mathbb{Z}_{2} symmetry

$$
B_{1}=-P B_{1} P^{-1} ; B_{2}=-P B_{2} P^{-1} ; \quad I=P I ; \quad J=J P^{-1}
$$

where $P \in G L(N)$ is some gauge transformation, obviously $P^{2}=1$. New manifold $\mathcal{M}_{\mathbb{Z}_{2}}$ is a disjoint union of connected components
$\mathcal{M}_{\mathbb{Z}_{2}}\left(N_{+}, N_{-}\right)$, where N_{+}and N_{-}are integers which denote the dimensions of V_{+}and V_{-}(i.e. even and odd subspaces of the fiber V) correspondingly, $N_{+}+N_{-}=N$. These numbers are fixed inside given connected component of $\mathcal{M}^{\mathbb{Z}_{2}}$.

Conformal algebras

We need only two connected components $\mathcal{M}^{\mathbb{Z}_{2}}(N, N)$ and $\mathcal{M}^{\mathbb{Z}_{2}}(N, N-1)$. In this section we calculate the number of fixed points on such components and discuss the result from the $\widehat{g l}(2)_{2} \times \mathcal{N S} \mathcal{R}$ point of view.
We introduce the generating function

$$
\chi(q)=\sum_{N}\left|\mathcal{M}^{\mathbb{Z}_{2}}(N, N)\right| q^{N}+\sum_{N}\left|\mathcal{M}^{\mathbb{Z}_{2}}(N, N-1)\right| q^{N-1 / 2}
$$

where $\left|\mathcal{M}^{\mathbb{Z}_{2}}\left(N_{+}, N_{-}\right)\right|$is a number of fixed points on $\mathcal{M}^{\mathbb{Z}_{2}}\left(N_{+}, N_{-}\right)$. This number equals to the number of pairs of Young diagrams with N_{+}white boxes and N_{-}black boxes.

$$
\chi(q)=\prod_{m \geq 0} \frac{\left(1+q^{2 m+1}\right)^{2}}{\left(1-q^{2 m+2}\right)^{3}}=\chi_{B}(q)^{3} \chi_{F}(q)^{2}
$$

where

$$
\begin{aligned}
\chi_{B}(q) & =\prod_{n \in \mathbb{Z}, n>0} \frac{1}{\left(1-q^{n}\right)} \\
\chi_{F}(q) & =\prod_{r \in \mathbb{Z}+\frac{1}{2}, r>0}\left(1+q^{r}\right)
\end{aligned}
$$

The $\chi_{B}(q) \chi_{F}(q)$ equals to the character of standard representation of the $\mathcal{N S R}$ algebra with generators L_{n}, G_{r}. The remaining part is related to the algebra $\mathcal{B} \times \mathcal{B} \times \mathcal{F}$ where \mathcal{B} is the Heisenberg algebra with generators b_{n} and relations $\left[b_{n}, b_{m}\right]=n \delta_{n+m}$ and \mathcal{F} is the Clifford algebra with generators f_{r} and relations $\left\{f_{r}, f_{s}\right\}=r \delta_{r+s}$.
Thus equation (9) means that the generating function of numbers of fixed points on components $\mathcal{M}^{\mathbb{Z}_{2}}(N, N)$ and $\mathcal{M}^{\mathbb{Z}_{2}}(N, N-1)$ equals to the character of representation of the algebra $\mathcal{A}=\mathcal{B} \times \mathcal{B} \times \mathcal{F} \times \mathcal{N} S \mathcal{R}$.

This representation theory point of view can be exploit similar to AFLT.

One can consider the whole space $\mathcal{M}^{\mathbb{Z}_{2}}$. The generating function has the form

$$
\begin{equation*}
\chi(q)=\sum_{N}\left|\mathcal{M}^{\mathbb{Z}_{2}}(N)\right| q^{\frac{N}{2}}=\prod_{n \in \mathbb{Z}, n>0} \frac{1}{\left(1-q^{\frac{n}{2}}\right)^{2}} \tag{1}
\end{equation*}
$$

The result equals to the character of the certain representation of $\widehat{g l}(2)_{2} \times \mathcal{N S} \mathcal{R}$ namely the tensor product of Fock representation of Heisenberg algebra, vacuum representation of $\widehat{s l}(2)_{2}$ and $N S$ representation of $\mathcal{N S \mathcal { R }}$.
In other words the generating function of numbers of fixed points on $\mathcal{M}^{\mathbb{Z}_{2}}(N)$ equals to the character of representation of the algebra $\mathcal{A}=\widehat{g l}(2)_{2} \times \mathcal{N S} \mathcal{R}$.

The relation between $U(2) N=2 \mathrm{SYM}$ on $\mathbb{R}^{4} / \mathbb{Z}_{2}$ and algebra $\widehat{g l}(2)_{2} \times \mathcal{N S \mathcal { R }}$ is a special case of the relation between $U(r) N=2$ SYM on $\mathbb{R}^{4} / \mathbb{Z}_{p}$ and conformal field theory based on the coset $\mathcal{A}(r, p)=\widehat{\mathfrak{g l f}(n)}_{r} / \mathfrak{g l} \widehat{(n-p)_{r}}$. Due to level-rank duality

$$
A(r, p)=H \times \widehat{\mathfrak{s l}(p)}_{r} \times \frac{\widehat{\mathfrak{s l}(r)_{p}} \times \widehat{\mathfrak{s l}(r)_{n-p}}}{\widehat{\mathfrak{s l}(r)_{n}}}
$$

3	\ldots	\ldots	\ldots
2	$H \times \widehat{\mathfrak{s l}}(2)_{1}$	$H \times \widehat{\mathfrak{s l}(2)_{2}} \times N S R$	\ldots
1	H	$H \times \operatorname{Vir}$	$H \times W_{3}$
p / r	1	2	3

Z_{2} invariant moduli space

$$
\frac{\prod_{\substack{\left.s, s^{\prime} \in \vec{Y} \\ s\right) \neq P\left(s^{\prime}\right)}}\left(\epsilon_{1}+\phi_{s^{\prime}}-\phi_{s}\right)\left(\epsilon_{2}+\phi_{s^{\prime}}-\phi_{s}\right) \prod_{\substack{\alpha=1,2 ; s \in \vec{Y} \\ P(s)=1}}\left(a_{\alpha}-\phi_{s}\right)\left(\epsilon_{1}+\epsilon_{2}-a_{\alpha}+\phi_{s}\right)}{\prod_{\substack{s, s^{\prime} \in \vec{Y} \\ P(s)=P\left(s^{\prime}\right)}}\left(\phi_{s^{\prime}}-\phi_{s}\right)\left(\epsilon_{1}+\epsilon_{2}-\phi_{s^{\prime}}+\phi_{s}\right)}
$$

In terms of arm-length and leg-length this expression reads

$$
\operatorname{det}^{\prime} v=\prod_{\alpha, \beta=1}^{2} \prod_{s \in \diamond Y_{\alpha}(\beta)} E\left(a_{\alpha}-a_{\beta}, Y_{\alpha}, Y_{\beta} \mid s\right)\left(Q-E\left(a_{\alpha}-a_{\beta}, Y_{\alpha}, Y_{\beta} \mid s\right)\right)
$$

The region ${ }^{\diamond} Y_{\alpha}(\beta)$ is defined as

$$
\diamond Y_{\alpha}(\beta)=\left\{(i, j) \in Y_{\alpha} \mid P\left(k_{j}^{\prime}\left(Y_{\alpha}\right)\right) \neq P\left(k_{i}\left(Y_{\beta}\right)\right)\right\}
$$

or, the boxes having different parity of the leg- and arm-factors.

$$
Z_{\mathrm{vec}}^{\mathbb{Z}_{2}}(\vec{a}, \vec{Y}) \equiv \frac{1}{\operatorname{det}^{\prime} v}
$$

$$
\begin{aligned}
& Z_{\mathrm{f}}^{(0)}\left(\mu_{i}, \vec{a}, \vec{Y}\right)=\prod_{i=1}^{4} \prod_{\alpha=1}^{2} \prod_{s \in Y_{\alpha}, s-\text { white }}\left(\phi\left(a_{\alpha}, s\right)+\mu_{i}\right) \\
& Z_{\mathrm{f}}^{(1)}\left(\mu_{i}, \vec{a}, \vec{Y}\right)=\prod_{i=1}^{4} \prod_{\alpha=1}^{2} \prod_{s \in Y_{\alpha}, s-\text { black }}\left(\phi\left(a_{\alpha}, s\right)+\mu_{i}\right)
\end{aligned}
$$

The first expression correspond to the case with even number of instantons, the second one correspond to the case with odd number of instantons.

Four-point Super Liouville conformal block

AGT type formula for the NS four-point conformal blocks :

$$
\begin{aligned}
& \sum_{N=0,1, \ldots} q^{N} \sum_{\substack{\vec{Y}, N_{+}(\vec{Y})=N \\
N_{-}(\vec{Y})=N}} \frac{Z_{\mathrm{f}}^{(0)}\left(\mu_{i}, \vec{a}, \vec{Y}\right)}{Z_{\text {vec }}^{\text {sym }}(\vec{a}, \vec{Y})}=(1-q)^{A} F_{0}\left(\Delta\left(\lambda_{i}\right)|\Delta(a)| q\right) \\
& \sum_{N=\frac{1}{2}, \frac{3}{2}, \ldots} q^{N} \sum_{\substack{\vec{Y}^{2} \\
\vec{Y}_{+}(\vec{Y})=N+\frac{1}{2} \\
N_{-}(\vec{Y})=N-\frac{1}{2}}} \frac{Z_{f}^{(1)}\left(\mu_{i}, \vec{a}, \vec{Y}\right)}{Z_{\text {vec }}^{\text {sym }}(\vec{a}, \vec{Y})}=(1-q)^{A} F_{1}\left(\Delta\left(\lambda_{i}\right)|\Delta(a)| q\right) .
\end{aligned}
$$

The formula is the main result of this talk. The parameters of the conformal block are related to those of the instanton partition function as

$$
\begin{array}{ll}
\mu_{1}=\frac{Q}{2}-\left(\lambda_{1}+\lambda_{2}\right), & \mu_{2}=\frac{Q}{2}-\left(\lambda_{1}-\lambda_{2}\right), \\
\mu_{3}=\frac{Q}{2}-\left(\lambda_{3}+\lambda_{4}\right), & \mu_{4}=\frac{Q}{2}-\left(\lambda_{3}-\lambda_{4}\right),
\end{array}
$$

and

$$
A=\left(\frac{Q}{2}-\lambda_{1}\right)\left(\frac{Q}{2}-\lambda_{3}\right)
$$

