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Introduction
Radiative corrections to different physical quantities needed for the
comparison of theoretical predictions with experimental data to be
collected with the CERN Large Hadron Collider (LHC) and other
colliders are expressed in terms of complicated Feynman integrals. In
many cases, radiative corrections must be evaluated analytically to
achieve reliable accuracies in the calculations.
Researches working for the LHC collider presented famous ”wishlist“
– a list of physical processes where next to leading order radiative
corrections are needed. Practically all these corrections require
evaluation of radiative corrections with 5-, 6- and more external legs.
Characteristic features of these corrections:

masses of many particles must be taken into account

diagrams with many external lines, i.e.many kinematic variables
must be calculated

Therefore one should know how to calculate analytically and (or)
numerically with very high precision functions of many variables.
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Introduction

To perform such calculations new mathematical approaches are
needed!
Rather novel concepts for such calculations were proposed during last
several years:

generalized recurrence relations

Gröbner bases technique

the method of dimensional recurrences

functional equations

These methods and techniques are either recursive or strongly
connected with recurrence relations. They do not exploit traditional
integral representations or differential equations.
To extend applicability of these approaches their mathematical
background should be further developed and certainly that will be
useful in other fields of research like it was with computer algebra
systems at the beginning of seventies.
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Tensor integrals
In general Feynman diagrams are sums of tensor integrals. These
integrals can be expressed as combinations of scalar integrals
multiplied by products of tensors made of Mankowski tensor and
external momenta.
There are essentially two different methods for reducing tensor
integrals to scalar ones. One method (Passarino-Veltman) based on
Ansatz for such integrals in terms of all possible combinations of
Mankowski tensor and external momenta multiplied by unknown
coefficients. For example,

∫

ddk kµkν

k2(k − p1)2(k − p2)2

= x1gµν + x2p1µp1ν + x3p1µp2ν + x4p2µp1ν + x5p2µp2ν

Contracting this Ansatz with gµν , p1µp1ν , ... one get system of
equations for x1, ..., x5. Solution for x1, ..., x5 will be given in terms of
scalar integrals. In a similar way one can get representation for more
complicated integrals. For higher rank tensor integrals such method
leads to very big complicated systems of equations.
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Tensor integrals
Another method for reducing tensor integrals is attributed to
introducing auxiliary vectors vj , applying formula,

k1µ1
. . .kL,µr =

1
i r

∂

∂vµ1

. . .
∂

∂vµr

exp[ivj kj ]
∣

∣

vs=0 ,

transforming the resulting momentum integrals into integrals over
Feynman parameters. From this parametric representation for an
arbitrary tensor integral one can obtain the following formula:

∫

ddk1. . .

∫

ddkL
k1µ. . .kNν

(k
2
1 − m2

1)
ν1 . . .(k

2
N − m2

N)νN

= Tµ,...,ν(q, ∂, d+)

∫

ddk1. . .

∫

ddkL
1

(k
2
1 − m2

1)ν1 . . .(k
2
N − m2

N)νN

where

d+G(d) = G(d+2) and ∂j =
∂

∂m2
j
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Tensor integrals

A general formula for the polynomial tensor operator Tµ,...,ν(q, ∂, d+)
was given by O.T., Phys.Rev. D54
This method is very efficient and it is easily implementable on
computers. There is no need to solve huge systems of linear
equations. However integrals with different shifts of the space-time
dimension do appear.
To reduce all such scalar integrals to basic set of integrals the method
of generalized recurrence relations was developed O.V. T., Phys.Rev.
D.54(1996) 6479. To obtain recurrence relations one can use ’t Hooft
and Veltman idea (Nucl.Phys. B44 (1972) 189) that

∫

ddk1. . .

∫

ddkL
∂

∂kjµ

ljµ

(k
2
1 − m2

1)ν1 . . .(k
2
N − m2

N)νN

= 0,

where k j are linear combinations of external and integration momenta,
lµ- is either integration or external momentum.
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IBP relations

Scalar products emerging after differentiation w.r.t. k , can be
represented as combinations of factors in denominators, masses and
external momenta (IBP method):

k1q1 =
1
2
{[(k1 + q1)

2 − m2
1] − [k2

1 − m2
1] − q2

1}, ....

thus leading to recurrence relations connecting integrals with different
powers of propagators. Such a representation is not always possible.
Some scalar products should be considered as additional propagators.
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Generalized recurrence relations
One can represent emerging scalar products in terms of integrals with
shifted space-time dimension by exploiting the formula:

∫

ddk1. . .

∫

ddkL
k1µ. . .kNν

(k
2
1 − m2

1)
ν1 . . .(k

2
N − m2

N)νN

= Tµ,...,ν(q, ∂, d+)

∫

ddk1. . .

∫

ddkL
1

(k
2
1 − m2

1)ν1 . . .(k
2
N − m2

N)νN

As a result one gets recurrence relations connecting integrals with
different powers of propagators νj and also integrals with different
dimensionality d .
Important: These recurrence relations additionally to νj have new
recurrence parameter - d . For this reason we call them generalized
recurrence relations
With this new parameter one can construct very efficient algorithms for
reducing scalar integrals to a set of bases integrals.
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Gröbner bases technique
The system of generalized recurrence relations is strongly
overdetermined. To find minimal set of recurrence relations allowing to
reduce scalar integrals to minimal set of integrals it was proposed to
use

Theory of Gröbner bases based on Buchberger algorithm.

To use theory of Gröbner bases for recurrence relations for Feynman
integrals for the first time was proposed by
1. O.V. T
Reduction of Feynman graph amplitudes to a minimal set of basic
integrals ,
Acta Physica Polonica, v B29 (1998) 2655
2. O. V. T,
Computation of Gröbner bases for two-loop propagator type integrals,
Talk at ACAT-2003
Nucl. Instrum. Meth. A 534 (2004) 293 [arXiv:hep-ph/0403253]
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GB for IBP relations for the 2-loop integrals

Consider the 2-loop vacuum type integral

J(d)
3 (ν1, ν2, ν3)

=
1

(iπd/2)2

∫ ∫

ddk1ddk2

(k2
1 − m2

1)
ν1((k1 − k2)2 − m2

2)
ν2(k2

2 − m2
3)

ν3
.

One can find GB for the IBP relations (i.e. for restricted set of relations)
and also for the generalized recurrence relations.
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Gröbner bases for IBP relations
GB for IBP recurrence relations read:

∆123ν11+J(d)
3 (ν1ν2ν3) =

{

u123(d − ν1 − 2ν2) + 2m2
2(ν1 − ν2)

+u312ν11+(2− − 3−) + 2m2
2ν22+(1− − 3−)

}

J(d)
3 (ν1ν2ν3).

∆123ν22+J(d)
3 (ν1ν2ν3) =

{

u213(d − ν2 − 2ν1) + 2m2
1(ν2 − ν1)

+u321ν22+(1− − 3−) + 2m2
1ν11+(2− − 3−)

}

J(d)
3 (ν1ν2ν3).

∆123ν33+J(d)
3 (ν1ν2ν3) =

{

u312(d − ν3 − 2ν1) + 2m2
1(ν3 − ν1)

+u231ν33+(1− − 2−) + 2m2
1ν11+(3− − 2−)

}

J(d)
3 (ν1ν2ν3).

where 1±J(d)
3 (ν1, ν2ν3) = J(d)

3 (ν1 ± 1, ν2, ν3),...,

uijk = mi − mj − mk

∆ijk = m4
i + m4

j + m4
k − 2m2

i m2
j − 2m2

i m2
k − 2m2

j m2
k .
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Gröbner bases for generalized recurrence relations

(d − 2)ν11+J(d)
3 (ν1ν2ν3) =

{

−u123 − 1− + 2− + 3−
}

J(d−2)
3 (ν1, ν2, ν3),

(d − 2)ν22+J(d)
3 (ν1ν2ν3) =

{

−u213 − 2− + 1− + 3−
}

J(d−2)
3 (ν1, ν2, ν3),

(d − 2)ν33+J(d)
3 (ν1ν2ν3) =

{

−u321 − 3− + 2− + 1−
}

J(d−2)
3 (ν1, ν2, ν3),

(d − 2)(d − ν1 − ν2 − ν3)J
(d)
3 (ν1, ν2, ν3)

= −
{

∆123 + u1231− + u2132− + u3123−
}

J(d−2)
3 (ν1, ν2, ν3).

By exploiting Gröbner bases either for IBP relations or for generalized
recurrence relations and explicit formula for tadpole integral, one can
reduce any integral J(d)

3 (ν1, ν2, ν3) with integer ν,ν2, ν3 to the set of

basic integrals J(d)
3 (1, 1, 1), J(d)

3 (0, 1, 1) , J(d)
3 (1, 0, 1) , J(d)

3 (1, 1, 0).
It turns out that Gröbner bases for generalized recurrence relations is
much more efficient than for IBP relations!!
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Example of calculation with Gröbner bases

Reduction of the integral J(d)
3 (3, 5, 4)

IBP relations: 72 sec
Generalized recurrence relations: 9 sec
For higher powers of propagators the difference in time is more than
20 times.
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Optimal sets of recurrence relations
There are even more efficient relations. For the considered example
they are:

(d − 2)ν1ν21+2+J(d)
3 (ν1, ν2, ν3)

=
{

−2m2
3ν33+ + (d − 2 − 2ν3)

}

J(d−2)
3 (ν1, ν2, ν3),

(d − 2)ν1ν31+3+J(d)
3 (ν1, ν2, ν3)

=
{

−2m2
2ν12+ + (d − 2 − 2ν2)

}

J(d−2)
3 (ν1, ν2, ν3),

(d − 2)ν2ν32+3+J(d)
3 (ν1, ν2, ν3)

=
{

−2m2
1ν11+ + (d − 2 − 2ν1)

}

J(d−2)
3 (ν1, ν2, ν3),

{

ν11+ + ν22+ + ν33+ − (d − ν1 − ν2 − ν3)
}

J(d)
3 (ν1, ν2, ν3) = 0.

To find these relations we used Gröbner bases. For the considered
integral J(d)

3 (3, 5, 4) exploiting above relations only 3 seconds were
needed to reduce it to basic integrals.
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Optimal sets of recurrence relations

The reason is that this optimal set of relations has no explicit
dependence on kinematical Gram determinants! This was one of the
criteria for finding those relations. Reduction of d → d − 2 was very
essential! Gram determinants disappear only in relations connecting
integrals with different dimensions of the space-time!
Similar recurrence relations were discovered for the one-loop multi-leg
integrals.

The direct calculations of the one-loop five gluon on-shell amplitude
are now in progress.
Depending on diagram evaluations optimal sets of recurrence relations
are from 10 to 100 times faster than with Gröbner bases for
generalized recurrence relations.

Tarasov (JINR,Dubna) Novel methods for calculating Feynman integrals 05 October 2011 16 / 36



The method of dimensional recurrences
Dimensional recurrences are particular case of generalized recurrence
relations. They include integral with fixed powers of propagators but
with different shifts of the space - time dimension and simpler integrals
considered as inhomogeneous part of the equation.

PrM
(d+r)
k + Pr−2M(d+r−2)

k + ... + P0M(d)
k = R

General solution of dimensional recurrences can be written in the form:

M(d)
k ({mj}, {pi pk}) =

∑

s

Φs(d , {mj}, {pi pk}) ws(d , {mj}, {pi pk})

where Φs are functions from the fundamental set of solutions for and
ws are the so-called ‘periodics‘ satisfying the following condition:

ws(d + 2, {mj}, {pi pk}) = ws(d , {mj}, {pipk})

They can be found, for example, from the comparison of the above
solution with the asymptotic value of the integral at d → ∞. In some
cases one can obtain simple differential equation with respect to
kinematic variables for ws(d , {mj}, {pi pk}).
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Results obtained by dimensional recurrences

With the help of these algorithms new analytic results were obtained:

hypergeometric representation for the one - loop integrals
corresponding to diagrams with three- and four external legs with
arbitrary kinematics

analytic formula for the on-shell one-loop massless pentagon type
integral

hypergeometric representation for the two-loop ’sunrise’
propagator type integral

Recently Lee and Smirnov applied this method in calculating four loop
massless propagator type integrals satisfying first order dimensional
recurrence relation.

Method of dimensional recurrences well suited for integrals with many
kinematic variables!
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Functional equations - introductory remarks

radiative corrections are expressible in terms of polylogarithms
and elliptic functions

it is known that polylogarithms and elliptic functions satisfy
functional equations

Regge (1967) suggested that Feynman integrals are expressible
in terms of hypergeometric functions

A.N. Varchenko (Matematicheskie Zametki, Vol. 44, No. 4, pp.
417-427, October, 1988): " According to I. M. Gel’fend, there are
probably functional equations for general hypergeometric
functions ..."

Until now no systematic methods for deriving functional equations for
hypergeometric functions were proposed.
What about functional equations for Feynman integrals?

Tarasov (JINR,Dubna) Novel methods for calculating Feynman integrals 05 October 2011 19 / 36



Derivation of functional equations
Feynman integrals satisfy recurrence relations which we write as

∑

j

Qj Ij ,n =
∑

k ,r<n

Rk ,r Ik ,r

where Qj , Rk are polynomials in masses, scalar products of external
momenta, d , and powers of propagators. Ik ,r - are integrals with r
external lines. In recurrence relations some integrals are more
complicated than the others: they have more arguments than the
others.

General method for deriving functional equations:

By choosing kinematic variables, masses, indices of propagators
remove most complicated integrals, i.e. impose conditions :

Qj = 0

keeping at least some other coefficients different from zero

Rk 6= 0
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Example: one-loop n-point integrals
One-loop integrals I(d)

n satisfy generalized recurrence relations O.T. in
Phys.Rev.D54 (1996) p.6479

Gn−1νj j+I(d+2)
n − (∂j∆n)I

(d)
n =

n
∑

k=1

(∂j∂k∆n)k−I(d)
n ,

where j± shifts indices νj → νj ± 1,

∂j ≡
∂

∂m2
j

,

Gn−1 = −2n

∣

∣

∣

∣

∣

∣

∣

p1p1 p1p2 . . . p1pn−1
...

...
. . .

...
p1pn−1 p2pn−1 . . . pn−1pn−1

∣

∣

∣

∣

∣

∣

∣

,

∆n =

∣

∣

∣

∣

∣

∣

∣

Y11 Y12 . . . Y1n
...

...
. . .

...
Y1n Y2n . . . Ynn

∣

∣

∣

∣

∣

∣

∣

, Yij = m2
i +m2

j −pij , pij = (pi − pj)
2 ,
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Functional equation for the integral I(d)
2

At n = 3, j = 1 we get equation:

G21+I(d+2)
3 (m2

1, m2
2, m2

3, p23, p13, p12)

−(∂1∆3)I
(d)
3 (m2

1, m2
2, m2

3, p23, p13, p12)

= 2(p12 + p23 − p13)I
(d)
2 (m2

1, m2
2, p12)

+2(p13 + p23 − p12)I
(d)
2 (m2

1, m2
3, p13) − 4p23I(d)

2 (m2
2, m2

3, p23).

where

G2 = 2p2
12 + 2p2

13 + 2p2
23 − 4p13p23 − 4p12p13 − 4p23p12,

∆3 = 2(m2
2 − m2

3)[(m2
1 − m2

2)p13 − (m2
1 − m2

3)p12] − 2m2
1p2

23 − 2m2
3p2

12

−2m2
2p2

13 − 2(m2
1 − m2

3)(m2
1 − m2

2)p23 + 2(m2
2 + m2

3)p12p13

+2(m2
3 + m2

1)p23p12 + 2(m2
2 + m2

1)p13p23 − 2p12p13p23
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Functional equation for the integral I(d)
2

Coefficients in front of I(d)
3 depend on 6 variables p12, p13, p23,

m2
1, m2

2, m2
3. To remove I3 from the equation we must solve system of

equations

G2 = 2p2
12 + 2p2

13 + 2p2
23 − 4p13p23 − 4p12p13 − 4p23p12 = 0,

∂1∆3 = −2p2
23 − 4m2

1p23 + 2m2
2p23 + 2m2

3p23 + 2p12m2
3

+2m2
2p13 − 2m2

3p13 + 2p13p23 − 2m2
2p12 + 2p23p12 = 0

Nontrivial solution of this system is:

p13 = s13(m
2
1, m2

2, m2
3, p12) =

∆12 + 2p12(m2
1 + m2

3) − (p12 + m2
1 − m2

2)λ

2p12
,

p23 = s23(m
2
1, m2

2, m2
3, p12) =

∆12 + 2p12(m2
2 + m2

3) + (p12 − m2
1 + m2

2)λ

2p12
.

where
λ = ±

√

∆12 + 4p12m2
3.

∆ij = p2
ij + m4

i + m4
j − 2pijm

2
i − 2pijm

2
j − 2m2

i m2
j .
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Functional equation for the integral I(d)
2

This solution leads to the following functional equation

I(d)
2 (m2

1, m2
2, p12) =

p12 + m2
1 − m2

2 − λ

2p12
I(d)
2 (m2

1, m2
3, s13(m

2
1, m2

2, m2
3, p12))

+
p12 − m2

1 + m2
2 + λ

2p12
I(d)
2 (m2

2, m2
3, s23(m

2
1, m2

2, m2
3, p12)).
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Reducing I(d)
2 (m2

1, m2
2, p12) to simpler integrals

Substituting m2
3 = 0 into functional equation we have :

I(d)
2 (m2

1, m2
2, p12) =

p12 + m2
1 − m2

2 − α12

2p12
I(d)
2 (m2

1, 0, s13)

+
p12 − m2

1 + m2
2 + α12

2p12
I(d)
2 (0, m2

2, s23)

where

s13 =
∆12 + 2p12m2

1 − (p12 + m2
1 − m2

2)α12

2p12
,

s23 =
∆12 + 2p12m2

2 + (p12 − m2
1 + m2

2)α12

2p12
,

α12 = ±
√

∆12.

Integral with arbitrary masses and momentum can be expressed in
terms of integrals with one propagator massless !!!
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Reducing I(d)
2 (m2

1, m2
2, p12) to simpler integrals

Analytic result for I(d)
2 (0, m2, p2) is known

Bollini and Giambiagi (1972b), Boos and Davydychev (1990rg):

I(d)
2 (0, m2, p2) = I(d)

2 (0, m2, 0) 2F1

[

1, 2 − d
2 ;

d
2 ;

q2

m2

]

.

where

I(d)
2 (0, m2, 0) = −Γ

(

1 −
d
2

)

md−4.

Substituting this expression for I(d)
2 (0, m2, p2) into functional equation

we get complete agreement with the known result for I(d)
2 (m2

1, m2
2, p12)
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Analytic continuation of I(d)
2

Setting m2 = 0 in the previous functional equation we have :

I(d)
2 (m2

1, 0, p12) =
m2

1

p12
I(d)
2

(

m2
1, 0,

m4
1

p12

)

+
(p12 − m2

1)

p12
I(d)
2

(

0, 0,
(p12 − m2

1)2

p12

)

.

where

I(d)
2 (0, 0, p2) =

Γ
(

2 − d
2

)

Γ2
(d

2 − 1
)

Γ(d − 2)
(−p2)

d
2 −2.

Integral I(d)
2 on the r.h.s. has inverse argument . In fact this equation

corresponds to the well known formula for analytic continuation:

2F1

[

1, 2 − d
2 ;

d
2 ;

z
]

=
1
z 2F1

[

1, 2 − d
2 ;

d
2 ;

1
z

]

+
Γ
(d

2

)

Γ
(d

2 − 1
)

Γ(d − 2)
(−z)

d
2 −2

(

1 −
1
z

)d−3

.
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Functional equations for other integrals

Very similar functional equations do exist for the three-, four-, e.t.c
integrals. Functional equations here play the same role as 24 Kummer
relations for Gauss’ hypergeometric function! Therefore functional
equations can be used for analytic continuation of functions with
several variables.
It is not so easy to obtain formulae for analytic continuation for
hypergeometric functions with several variables. For the rather simple
Appell function F1 explicit representation in terms of Gauss
hypergeometric function was used.
For analytic continuation of Feynman integrals with the help of
functional equations explicit representation is not needed!
It will be interesting to obtain functional equations for some Green
functions to all orders of perturbation theory. Probably one can use
use Dyson-Schwinger equations and exploit functional equations for
the kernels of this equations.
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Functional equation for one-loop pentagon
Let’s consider pentagon type massless integral

I(d)
5 (p12, p13, p14, p15, p23, p24, p25, p34, p35, p45) =
∫

ddk1

iπd/2

1
(k1 − p1)2(k1 − p2)2(k1 − p2)2(k1 − p4)2(k1 − p5)2 ,

where
pij = (pi − pj)

2. (1)

at
p15 = p23 = p45 = 0.

The functional equation can be derived, for example, from the equation

G52+I(d+2)
6 − (∂2∆6)I

(d)
6 =

6
∑

k=1

(∂2∂k∆6)k−I(d)
6 ,
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Functional equation for one-loop pentagon

There are a lot of functional equations for the pentagon integral. In our
case the most simple reads:

I(d)
5 (p12, p13, p14, 0, 0, p24, p25, p34, p35, 0) =

−p13

p12 − p13
I(d)
5 (p13, p14, 0, 0, p34, p35, 0, 0, S46, S56)

+
p12

p12 − p13
I(d)
5 (p12, p14, 0, 0, p24, p25, 0, 0, S46, S56)

where

S46 =
p34p12 − p13p24

p12 − p13
, S56 =

p35p12 − p13p25

p12 − p13

The integrals with 7 variables was expressed in terms of integrals with
6 variables!
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Finding new relationships for hypergeometric functions
From numerous results we know that Feynman integrals can be
expressed in terms of generalized hypergeometric functions, Appell
functions F1, F2,F3, F4 Laurichella, Laurichella-Saran e.t.c functions. .
These results were obtained using rather different methods, e.g.

by directly evaluating the integrals from their Feynman parameter
representations,
by applying Mellin-Barnes integral representations,
by solving recurrence relations,
by solving differential equations,
by making use of the negative-dimension approach,
or by using spectral representations.

As a method for finding relations between hypergeometric functions,
Srivastava and Karlsson in their book advocated the evaluation of
integrals reducible to hypergeometric functions by several different
methods and the comparison of the results thus obtained. In this
respect, the evaluation of Feynman integrals may be considered as a
rich source for finding relations between hypergeometric functions.
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New analytic result for the 1-loop propagator integral
Consider the one-loop propagator type integral with arbitrary masses
and arbitrary powers of propagators:

I(d)
ν1ν2

(m2
1, m2

2; s12) =

∫

ddq
iπd/2

1
[(q − p1)2 − m2

1]
ν1 [(q − p2)2 − m2

2]ν2
.

For this integral we obtained the following formula (B.A. Kniehl and
O.V. T., in arXiv:1108.6019, to appear in Nucl.Phys.B)

I(d)
ν1ν2

(m2
1, m2

2; s12) =
(−1)ν1+ν2Γ

(

ν1 + ν2 −
d
2

)

Γ(ν1 + ν2)(m2
2)ν1+ν2−d/2

×F1

(

ν1, ν1 + ν2 −
d
2

, ν1 + ν2 −
d
2

; ν1 + ν2; x−, x+

)

,

where

x± =
1 + x − y ±

√

x2 + y2 + 1 − 2xy − 2x − 2y
2

, x =
s12

m2
2

, y =
m2

1

m2
2

,
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Reduction of the F1 function to 3F2 function

An analytic result for this integral in terms of two Appell functions F4

was derived by E. Boos and A. Davydychev. Comparing both results
we can derive relation between F1 and F4 functions.
Just for simplicity we consider the case m1 = m2. By using
Mellin-Barnes representation E. Boos and A. Davydychev obtained the
following result

I(d)
ν1ν2

(m2, m2; s12) = (−1)ν1+ν2(m2)d/2−ν1−ν2

×
Γ
(

ν1 + ν2 − d
2

)

Γ(ν1 + ν2)
3F2

[

ν1, ν2, ν1 + ν2 −
d
2 ;

ν1+ν2
2 , ν1+ν2+1

2 ;

x1

x2

]

.
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The case of equal masses

At m2
1 = m2

2 = m2 comparing this formula with our result we obtain:

F1

(

α, β, β; γ; x −
√

x2 − 2x, x +
√

x2 − 2x
)

= 3F2

[

α, γ − α, β ;
γ
2 , γ+1

2 ;

x
2

]

,

which may be rewritten as:

F1

(

α, β, β; γ; x ,
x

x − 1

)

= 3F2

[

α, γ − α, β ;
γ
2 , γ+1

2 ;

x2

4(x − 1)

]

.

To the best of our knowledge, there is no such a relation in the
mathematical literature. The only relation of this kind was known for
the function F1 (α, β, β; γ; x , −x ).
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Ramanujan type relation

Another interesting relation follows from the comparison of imaginary
part of the 2-loop "sunrise integral" calculated by two different
methods:

2F1

[ 1
2 , 1

2 ;
1 ;

(x − 3)(x + 1)3

(x + 3)(x − 1)3

]

=

√

3(x + 3)(x − 1)3

(x2 + 3)
2F1

[ 1
3 , 2

3 ;
1 ;

x2(x2 − 9)2

(x2 + 3)3

]

.

The hypergeometric function 2F1 on the left-hand side of this equation
is proportional to the complete elliptic integral of the first kind.
Relations between hypergeometric functions with parameters
1/2, 1/2, 1 and 1/3, 2/3, 1 but with arguments different from that in the
above equation were first derived by Ramanujan.
Several other relations one can find in the paper:
B. A. Kniehl and O.V. T., (arXiv:1108.6019 [math-ph])
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Conclusions and Future Work

generalized recurrence relations provide us a tool for efficient evaluation
of Feynman integrals but further investigation concerning optimal sets
(Gröbner bases) of recurrence relations is needed

the method of dimensional recurrences can be used in calculation of
multiscale integrals as well as multiloop integrals. Dimensional
recurrences are simpler than differential equations because singularity
structure of differential equations w.r.t kinematic variables is more
complicated than w.r.t. d

functional equations represent a powerful instrument for analytic
continuation of Feynman integrals. For a detailed classification of these
equations group theoretical approach should be formulated.

computational machinery for Feynman integrals can be used to obtain
relationships for hypergeometric functions that will be useful in other
applications. From the already known results we can essentially extend
lists of formulae given in the well known books by Baitmen-Erdely and
Brychkov,Marichev,Prudnikov.
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