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The localization method

The key problem of Quantum Field Theory: compute the path
integral

Z(J) =

∫
dΦ e−S(Φ,J).

Perturbation theory: Feynman diagrams (convergency ?)
Non-perturbative computation ?
Exact computation: topological field theories (no physical exci-

tations): Witten, 1988.

The simplest case: the Witten index in 4d SUSY theories

IW = Tr (−1)Fe−βH =

∫
PBC

dφdψe−S(φ,ψ).

No β-dependence due to SUSY cancellations (only zero modes of
the Hamiltonian H contribute).

Computation of the bulk IW using the localization technique:
Moore, Nekrasov, Shatashvili, 1998.

The idea: compute

Z =

∫
dφdψe−S(φ,ψ)−tδO,

where δ is a fermionic symmetry of action S and the measure,
δ2 = δb is a bosonic symmetry of O (e.g., δ2 = 0).



dZ

dt
= −

∫
dφdψ

(
δO

)
e−S(φ,ψ)−tδO

= −
∫
dφdψδ

(
Oe−S(φ,ψ)−tδO

)
= 0.

⇒ no dependece on t.

t → 0 : the needed object, but for t → +∞ : the integral is
localized on the zero modes of O ⇒ gaussian path integrals for
some fields ⇒ finite-dimensional integrals (matrix models).

Recent progress of exact computations in realistic field theories
on non-trivial manifolds:
• 4d superconformal (topological) indices on S3 × S1 for SYM

theories with N = 4 (Kinney, Maldacena, Minwalla, Raju, 2005)
and N = 1 (Romelsberger, 2005).

Dolan, Osborn (2008): identification with the elliptic hyperge-
ometric integrals (V.S., 2000) and confirmation of a number of
Seiberg dualities.

V.S., G. Vartanov (2008-2011): a systematic investigation (see
below).
• 4d partition functions of N = 2, 4 SYM on S4 (Pestun, 2007)
• 3d superconformal indices of SYM and CS on S2 × S1 for
N = 6 (Kim, 2009) and N = 2 (Imamura, Yokoyama, 2011; a
correction, Krattenthaler, V.S., G. Vartanov, 2011).
• 3d partition functions ofN = 2 SYM and CS on S3

b (Kapustin,
Willet, Yaakov, 2010; Jafferis, 2010; Hama, Hosomichi, Lee, 2011)



4d superconformal index

SU(2, 2|1) space-time symmetry group:
Ji, J i (SU(2) subgroups generators, or Lorentz rotations),
Pµ, Qα, Qα̇ (supertranslations),
Kµ, Sα, Sα̇ (special superconformal transformations),
H (dilations) and R (U(1)R-rotations).
Internal symmetries: a local gauge group Gc (generators Ga) and

a global flavor group F (generators Fk).

For Q = Q1 and Q† = −S1,

{Q,Q†} = 2H, H = H − 2J3 − 3R/2.

The superconformal index:

I(y; p, q) = Tr
(
(−1)FpR/2+J3qR/2−J3

∏
k

y
Fk
k e−βH

)
,

R = H −R/2, [Q,R] = [Q, J3] = [Q,Fk] = 0,
F – the fermion number,
p, q, yk, β are group parameters (fugacities).

It counts BPS statesH|ψ〉 = 0 or cohomology ofQ, Q† operators
(hence, no β-dependence).



“Computation” (simple examples, guesswork, plethystic machin-
ery; Römelsberger, 2007) ⇒ matrix integral

I(y; p, q) =

∫
Gc

dµ(z) exp
( ∞∑
n=1

1

n
ind

(
pn, qn, zn, yn

))
,

dµ(z) – the Haar Gc-invariant measure,
ind – the single particle states index,

ind(p, q, z, y) =
2pq − p− q

(1− p)(1− q)
χadjG(z)

+
∑
j

(pq)rjχRF ,j(y)χRG,j(z)− (pq)1−rjχR̄F ,j
(y)χR̄G,j

(z)

(1− p)(1− q)
.

χRF ,j(y) and χRG,j(z) – characters of representations,
yj and za – maximal torus variables of F and Gc,
2rj – the R-charges.

For the unitary group SU(N), z = (z1, . . . , zN),
∏N

j=1 za = 1,∫
SU(N)

dµ(z) =
1

N !

∫
TN−1

∆(z)∆(z−1)

N−1∏
a=1

dza
2πiza

,

∆(z) =
∏

1≤a<b≤N

(za − zb), the Vandermonde determinant.



Take N = 1 SQCD with G = SU(2), F = SU(6) and the vector
and quark superfields:

1) (adj, 1), χSU(2),adj(z) = z2 + z−2 + 1,

2) (f, f), χSU(2),f(z) = z + z−1, rf = 1/6,

χSU(6),f(y) =

6∑
k=1

yk, χSU(6),f̄(y) =

6∑
k=1

y−1
k ,

6∏
k=1

yk = 1.

Then the superconformal index (SCI):

IE =
(p; p)∞(q; q)∞

4πi

∫
T

∏6
j=1 Γ(tjz

±1; p, q)

Γ(z±2; p, q)

dz

z
,

where T is the unit circle, (a; q)∞ =
∏∞

k=1(1− aqk),

Γ(z; p, q) =

∞∏
j,k=0

1− z−1pj+1qk+1

1− zpjqk
, |p|, |q| < 1,

is the elliptic gamma function. Conventions: tj = (pq)1/6yj,

Γ(t1, . . . , tk; p, q) := Γ(t1; p, q) · · ·Γ(tk; p, q),

Γ(tz±1; p, q) := Γ(tz; p, q)Γ(tz−1; p, q).

Seiberg “electric-magnetic” duality (1994): in IR particles con-
fine, the dual theory = a Wess-Zumino model of chiral field TA :



Φij = −Φji, 15-dim irrep. of F = SU(6). Then

χSU(6),TA
(y) =

∑
1≤i<j≤6

yiyj, rTA
= 1/3.

and the magnetic SCI is

IM =
∏

1≤j<k≤6

Γ(tjtk; p, q).

Theorem (V.S., 2000). Let |p|, |q|, |tj| < 1,
∏6

j=1 tj = pq.
Then

IE = IM .

A principally new exactly computable integral:
THE ELLIPTIC BETA INTEGRAL

More generally, a principally new class of special functions =
elliptic hypergeometric functions.

Mathematical importance.
Newton (1665): the binomial theorem,

1F0(a;x) =

∞∑
n=0

(a)n
n!

xn = (1− x)−a, |x| < 1, a ∈ C,

where

(a)n = a(a + 1) · · · (a + n− 1) the Pochhammer symbol



Euler-Gauss: q-binomial theorem,

1ϕ0(t; q, x) =

∞∑
n=0

(t; q)n
(q; q)n

xn =
(tx; q)∞
(x; q)∞

, |x|, |q| < 1.

(x; q)n =

n−1∏
k=0

(1− xqk) the q-Pochhammer symbol

These are the simplest representatives of the plain and q-hypergeometric
functions. At the elliptic level,

Elliptic beta integral = elliptic binomial theorem.

It generalizes the Euler beta integral∫ 1

0

xα−1(1− x)β−1dx =
Γ(α)Γ(β)

Γ(α + β)

and many other integrals (e.g., Askey-Wilson q-beta integral). Many
multidimensional analogues, e.g., extending the Selberg integral.
arXiv surveys: math.CA/0511579 and 0805.3135.

Coincidence of SCIs with the elliptic hypergeometric integrals
was discovered by Dolan and Osborn (2008)⇒ confirmation
of some Seiberg dualities.



General Seiberg duality for SU(Nc) gauge group

“Electric” theory:
SU(Nc) SU(Nf)l SU(Nf)r U(1)B U(1)R

Q f f 1 1 Ñc/Nf

Q̃ f 1 f -1 Ñc/Nf

V adj 1 1 0 1

“Magnetic” theory:

SU(Ñc) SU(Nf)l SU(Nf)r U(1)B U(1)R
q f f 1 Nc/Ñc Nc/Nf

q̃ f 1 f −Nc/Ñc Nc/Nf

M 1 f f 0 2Ñc/Nf

Ṽ adj 1 1 0 1

where Ñc = Nf−Nc and 3Nc/2 < Nf < 3Nc (conformal window).

Seiberg conjecture: these two N = 1 SYM theories have the
same physics at their IR fixed points.

Consistency checks:

• The global anomalies match (’t Hooft anomaly matching)
• Matching of the reductions Nf → Nf − 1
• The moduli spaces have the same dimensions and the gauge

invariant operators match



The electric theory index:

IE = κNc

∫
TNc−1

∏Nf

i=1

∏Nc
j=1 Γ(sizj, t

−1
i z−1

j ; p, q)∏
1≤i<j≤Nc

Γ(ziz
−1
j , z−1

i zj; p, q)

Nc−1∏
j=1

dzj
2πizj

,

Nc∏
j=1

zj = 1, κN =
(p; p)N−1

∞ (q; q)N−1
∞

N !
.

The magnetic theory: IM = κÑc

∏Nf

i,j=1 Γ(sit
−1
j ; p, q)×

×
∫

TÑc−1

∏Nf

i=1

∏Ñc
j=1 Γ(S

1
Ñcs−1

i xj, T
− 1

Ñc tix
−1
j ; p, q)∏

1≤i<j≤Ñc
Γ(xix

−1
j , x−1

i xj; p, q)

Ñc−1∏
j=1

dxj
2πixj

,

where
∏Ñc

j=1 xj = 1, Ñc = Nf −Nc,

S =
∏Nf

i=1 si, T =
∏Nf

i=1 ti, ST−1 = (pq)Nf−Nc.

Theorem: If |sj|, |t−1
j |, |ti/T 1/Ñc|, |S1/Ñc/si| < 1, then IE = IM .

For Nc = 2, Nf = 4 (V.S., 2003), general Nc, Nf (Rains, 2003)

A fundamental physical interpretation:

Explicit computability of the elliptic hypergeomet-
ric integrals = confinement in 4d N = 1 SUSY gauge
theories.
The process of integrals’ computation = transition

from UV (weak coupling) to IR (strong coupling) physics.



Joint work with G.S. Vartanov (Dima’s former stu-
dent) (2008–2011, 7 papers + in preparation)

Summary of the main results:

• ’t Hooft anomaly matching←→ the total ellipticity condition
for elliptic hypergeometric terms:

ratios of integral kernels satisfy a set of linear first order q-
difference equations with coefficients which are elliptic func-
tions (with modulus p) of all variables zk, xl, tj, sj, and q

• All known identities lead to totally elliptic hypergeometric
terms → conjecture: this property is necessary for com-
putability/nice symmetry of integrals

• SCIs are invariants of the conformal manifold against the
exactly marginal deformations.

Non-marginal deformations⇒ special restrictions on fugac-
ities. E.g., Nf → Nf − 1 reduction by adding mass terms

Mk
kQ

kQ̃k with Mk
k → ∞ in the electric theory leads to

Higgsing of the gauge group on the magnetic side, so that
SU(Nf − Nc) → SU(Nf − Nc − 1). For SCIs: skt

−1
k = pq

(a simple substitution for IE and a residue calculus for IM)

• “Vanishing” (delta function behavior) of superconformal in-
dices ←→ chiral symmetry breaking



• About 15 new computable elliptic beta integrals on root sys-
tems and a similar number of new symmetry transforma-
tions for higher order elliptic hypergeometric integrals with
SU(N), SP (2N), G2, E6, F4 gauge groups (conjectures)

• About 15 new pairs of N = 1 dual field theories (e.g., mul-
tiple dualities for Gc = SP (2N) with 8 flavors and Gc =
SU(N) with 4 + 4 flavors, new confining theories)

• There are non-trivial dualities lying outside the conformal
window (for different dual gauge groups)

• For N = 4 SYM theories – derivation of explicit forms of
indices for all simple gauge groups and exact computation in
two important limit. Possible consequences for the AdS/CFT
correspondence for finite rank gauge groups.

• Partial confirmation of the equality of indices forN = 4 SYM
SP (2N)←→ SO(2N + 1) duality (GPRR, 2010)

• Discovery of many new relations between dualities (some of
them are deducible from the others)

• It is conjectured that there are infinitely (countably) many
supersymmetric dualities and corresponding elliptic hyperge-
ometric integral identities.



This year developments:

• The 3d supeconformal indices on S2 × S1 with U(1) gauge
group were computed exactly and their equality for some dual
pairs was rigorously proven (Krattenthaler, V.S., Vartanov)

• 3d partition functions on S3
b are obtained as reductions of 4d

SCIs on S3 × S1, or by reduction of elliptic hypergeometric
integrals to the hyperbolic q-hypergeometric integrals (Dolan,
V.S., Vartanov; Gadde, Yan; Imamura)

• Analysis/conjectures of about 20 dualities/integral relations
for SO(N) gauge group
• State integrals for knots on S3 (topological invariants, Hikami,

2001) are limits of 4d SCIs
• 2d vortex partition function is a limit of a particular 3d par-

tition function which, in turn, is a limit of a particular 4d
SCI.

arXiv:1107.5788 (V.S, G. Vartanov), 68 pp.,
dedicated to D.I. Kazakov @ 60.

Further great discoveries to you, Dima !


