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quantum mechanics: 

states of subsystems may not be described  independently 

= states are entangled
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Quantum entanglement

importance:

studying correlations of different systems (especially at 

strong couplings), critical phenomena and etc 



Entropy as a measure of entanglement

Computation of the reduced density matrix and 

entanglement entropy is a difficult problem, in general
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entanglement has to do with quantum gravity:

● possible source of the entropy of a black hole (states inside and outside 

the horizon);

● d=4 supersymmetric BH’s are equivalent to 2, 3,… qubit systems

● entanglement entropy allows a holographic interpretation for CFT’s with 

AdS duals



Holographic Formula for Entanglement 

Entropy (n=1)
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Ryu and Takayanagi,
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entropy of entanglement is measured in terms of the

area of
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Holographic formula enables one to compute entanglement entropy

in strongly correlated systems with the help of geometrical

methods (the Plateau problem);

Ryu-Takayanagi formula passes several non-trivial tests:

- in 2D and 4D CFT’s (at weak coupling);

-for different quantum states;

-for different shapes and topologies of the separating surface in

boundary CFT

Is it possible to find a holographic description of 

entanglement Renyi entropy?



Plan:

- new result:  Renyi entropies in 2D and 4D CFT’s (at 

weak couplings);

- Difficulties with a holographic description Renyi entropies 

in CFT’s and a (possible) wayout;



Entanglement Renyi Entropy in CFT‟s

at weak coupling



1st step: representation in terms of 

a „partition function‟
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2d step: relation of a „partition function‟ to an 

effective action on a „curved space‟

effective action( , ) ln ( , )W T Z T   
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1 1Tr 

a ‘curved space’ with conical singularity at the separating point (surface)

one glues n 

(n=3) copies  



3d step: use results of spectral geometry  

1

0

2
, , ,

0

Laplace operators of different spin fields on 

for dimension even,

where   

is a UV cutoff; is a physi

1
ln det , 1

2

ln( / ) ...

, : Tr ;k

k k k

k

k

d
pd p

d

p

p d
tL

p k k p k p k p

k p

W L

L M
n

a
W a d

p d

a a a e t a

 

















  



   




 





 





2

0

2 1

0 2

cal scale (mass, inverse syze etc)

an example: a scalar Laplacian :
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There are non-trivial contributions from conical singularities

located at the 'separating' 
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Renyi entropies

(if boundaries are absent)
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computations  
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val devided into 2 or 3 parts

- the number of separating points (which yield conical singularities)1,2k 

2D CFT: “c” massless scalars and spinors  
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 scalar multiplets, 4 multiplets of Weyl spinors, 1 multiplet of gluon fields

area of the separating surface  
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3 2 2

scalar curvature of    a pair of unit orthogonal normals to 

Ricci and Rieman tensors of  at  

 has vanishing extrinsic cu
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rvatures

4D N=4 super SU(N) Yang-Mills theory at weak coup.



Entanglement entropy (n=1)
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y's conjecture:  "charge"     decreases monotonically along RG flowsa



Conformal invariance and extrinsic curvatures
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are extrinsic curvatures of    associated to normals  

but there may be an extra piece:
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ly computed so far;

   this result follows from 'holographic' type arguments 

(see S.N. Solodukhin. arXiv:0802.3117)

lim ( ) 1,n
n

d 






Toward a holographic description of

Entanglement Renyi Entropy in CFT‟s



A possible structure the holographic formula
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are local invariant functionals on 

'curvatures' at  are small compared curvature,  a holographic surface 

in the bulk:  

....
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reproduces Renyi entropy in 2D CFT
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Next order terms and D4 CFT‟s
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Summary:

● new result for the entanglement Renyi entropies (ERE)

in D=4 CFT’s

● ERE is a local invariant functional which have a structure similar to

EE -> possibility to find a holographic description of ERE

● a conjectured approach to a holographic ERE:

-describes ERE in 2D CFT(for a single interval)

- has a potential to reproduce ERE in 4D CFT

The work is in progress



thank you for attention


