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I. Large IR corrections in dS space:

Typical corrections [)\2 log(p W)]n

A — coupling constant

p — co—moving momentum
1n — conformal time

pn — physical momentum

Need to sum them up

Dyson—Schwinger equation reduces in the IR limit to
the Boltzman’s kinetic equation



II. dS space:

Global coordinates:

Xog=-sinht
X; = w; cosht, w? =1,

ds* = dt* — cosh* t d23,_,

Planar coordinates (expanding Poincare patch):

ds* = dt* — e*' di* = a(n) [dnz - d:EQ]

n — oo — past, n — 0 — future



Contracting Poincare patch:

n — 0 — past, n — co — future

II1. Interacting fields in dS

We are going to study 4D real scalar minimally

coupled \¢* theory with m? > 9/4



Klein—Gordon equation:

A
a'0,a’0, — — + m?| ¢(n,x) = 0.
a

gk(n) = */? h(kn)/V/2

h(kn) — solution o the Bessel equation

—

on.7) = [ % [orgitn e+ af gitn) e

|



IV Tree—level two—point function:

Free Hamiltonian H(n) = a*(n) [ &’z Tyo(n)

Solution of the KG equation and of B, = 0 do not

coincide.

Hence, H, is not diagonal.

E.g. Bunch—Davies harmonics

HZ(.EL) (x) is the Hankel function. For them Bj(n — o) — 0



Nonstationary situation. Then Retarded propagator:

D" (i, ma|7) = 0(m — m2) {[o(m1,0), ¢(12,7)])

And Keldysh propagator

DX (ny, mo|7) = 5 ({&(m,0), d(n2, ) })

We define

— —

_3 :
d" (m,me|p) = (mm2)”? fd3r D (g, mp|7) e~ 127

Tree—level

[h(pmy) B (pm) + h*(pmy) h(pn2)] (apa))) +
+h(pm) h(pn2) {a,a_,) + h.c.,

1
dé{ (1”71719772) = §
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If we average wrt the ‘“vacuum” state for the given

choice of harmonics:

(afay) =0, (apa_,) =0, (aja’,)=0

And

1
DK(W1>7727 ‘f_ g’) - Cl (Z2 o 1) ? Pi%—#—iu
1

+02 (22 — 1>_7 Ql_%+iu(2),

(2) +

P! and Q) — associated Legendre functions

1+ (m—n2) 47—
2m n2

(m, %) and (12, 7)

z = hyperbolic distance between

C12 — complex constants. Depend on the particular

choice of the Harmonics.

E.g. for the BD harmonics (5 = 0 — analytical con-

tinuation from the sphere



One—loop two—point function:

[h(pm) h*(pn2) + K" (pm) R(pn2)] 271 +
+h(pm) h(pn2) kp + h.c.

dX (pmy, pp) =

N | —

DO —

X

A2
n,(n) = ( a ap) —4—/ ?// dxy dzs (11 22)
P 0.
2
k

o] W] W) ()

A2 Y d “ 1
Ky = (apa_p) = 53 / - / dxy / dxy (r1x9)2 X
P s

o0

xh? [% xl} B [% xQ} h2(z) [h ()2

Even if we start with n, =0, x, = 0. They are gener-

ated at loops — pair creation.

Feynman diagrammatic technic does not lead to terms

o h(pm) h(pnz) and c.c..
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We are interested in the leading IR terms pn;, — 0

For BD harmonics:
hiz)~ A a" +A_27" as x—0

And

coth ()
di.y (pm, ) ~ o

><{1+ X g <i> / [: doydas (21 29)F B2(ay) [ ()]

2m2 1
} + c.c.

X [9(331 — 19) (%)M — (s — 71) (%) N

s = /T2

s+ Ay AT (pn)® %

S =

From this answer we see that n, ~ |x,|. Hence, BD

harmonics are not suitable for the kinetic equation.
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Side remark:

Analytical continuation from the sphere — renormal-

ization of the mass only
@ — -+ Ap, Ay is complex
Then the corrections would have had the form:
coth ()

24
+AL AT (pn)*" 240 Ap log(pn) + c.c.

dX (pny, pny) = s A log(s) +

Does not coincide with that what we actually get.
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One loop result for the out—Jost functions:

The leading IR contribution to the two—point func-

tion:

1 y
dX | (pmi, pp) =~ % [s" 4+ 7] x

2 1 0 . -l 2
X< 1+ A log | — / dx 22+ H h*(z) — e
272 |1 on ~ 4 sinh(m p)

——

The k, is suppressed in comparison with n, in the IR

limit. Suitable for the kinetic equation.
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V. The kinetic equation:

dlog(n)
X {Fl X [(1 + n,) Ny n, . — Ty (1+mng) (14 np—k)} (n') +

+2 Fy x [nk (I4+np—p) (L+mn,) — (14 nk) npy np} (n') +

+ I35 X [(1 + ) (1+npen) (L+n,) — ngnper np} (n) }

Fi =Re (C* [% kn, kn, (% — 1) kn} X

X/kkndy’ ()2 C [%y’, Y, (%— ) y’D

70

Fy = Re (0* [kn, (1 _ 3) kn, £ kn} x

) k k
X /kn: dy (y')2 C [y’, (1 — %) Y, %y’D
F3 =Re (D* [k:n, (% + 1) kn, %kn} X

X /:n dy' (/)2 D [y’, (%+ 1) Y, %y’D

10

Mo is the moment of time when we switch on the inter-
actions; Clz,y, 2| = h*(x) h(y) h(z), D|x,y, z| = h(x) h(y) h(2)
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Solution in the expanding patch

In the limit pn — 0 n(pn) — 0. Then

(14 np) n np—t — 1 (14 11) (1 4 np—e) = —n(p)
g (14 ng—p) (1 +ny) — (14 ng) nk—p nyy = n(kn)
(1) (1 4+ nper) (14 np) = g gy = 1

Furthermore, n(z) > n(y) for y >«

dn() :

—In(z) =T

dlog(x) n(z) ’

. A2 0 Juai—in |2 me H ’

_ 51 _
22 1 ‘/oo Y [ W= sinh(mr 1) !y\] ’
A2 0 1, me TH ’
F/ L d AL h2 .
27 | oY [ W= sinh(m 1) |y|]

L.e. n(pn) = %/ [C (p n)r — 1}, % ~e T ]

C — integration constant. Depends on the initial con-

ditions. ' = —1 — above one—loop result.
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Solution in the contracting patch

The same equation as in expanding patch with the

opposite relative sign between RHS and LHS.

n — oo — future.

As pn — 0 we expect n,(n) to be independent of p and
n(n) >1

(1+ np) NENyp—k — Ty (1+mng) (1+ np—k) ~ —n2(77)
n, (1 + nk—p) (1+ np) — (1 +ny) Ng—pNp ~ n2(77)

(1 +ng) (L4+npr) (1 +ny) — npnprpn, = n?(n)

d B 3 )\2 2
nn) _ ['n(n), where I & — a v > 0
dlog(n) T™=m (m — 5)
1
n < ny= et/ ¥ 1.4 — integration constant.



