KINETIC EQUATION IN DE SITTER SPACE

ETA, P.Burda and A.Sadofyev

(ITEP, MIPT, Moscow)

TO APPEAR

I. Large IR corrections in dS space:

Typical corrections $\propto \left[\lambda^2 \log(p \, \eta)\right]^n$

 λ — coupling constant

p — co–moving momentum

 η — conformal time

 $p\eta$ — physical momentum

Need to sum them up

Dyson–Schwinger equation reduces in the IR limit to the Boltzman's kinetic equation

II. dS space:

$$X_0^2 - X_i^2 = -R^2 \to -1, \quad i = 1, \dots D$$

$$ds_{D+1}^2 = dX_0^2 - dX_i^2$$

Global coordinates:

$$X_0 = \sinh t$$

$$X_i = \omega_i \cosh t, \quad \omega_i^2 = 1,$$

$$ds^2 = dt^2 - \cosh^2 t \, d\Omega_{D-1}^2$$

Planar coordinates (expanding Poincare patch):

$$ds^{2} = dt^{2} - e^{2t} d\vec{x}^{2} = a(\eta) \left[d\eta^{2} - d\vec{x}^{2} \right]$$
$$a(\eta) = \frac{1}{\eta}, \quad \eta = e^{-t}$$

$$\eta \to \infty$$
 — past, $\eta \to 0$ — future

Contracting Poincare patch:

$$ds^2 = dt^2 - e^{-2t} d\vec{x}^2 = a(\eta) \left[d\eta^2 - d\vec{x}^2 \right]$$

 $a(\eta) = \frac{1}{\eta}, \quad \eta = e^t$

$$\eta \to 0$$
 — past, $\eta \to \infty$ — future

III. Interacting fields in dS

We are going to study 4D real scalar minimally

coupled $\lambda \phi^3$ theory with $m^2 > 9/4$

Klein-Gordon equation:

$$\left[a^{-4}\,\partial_{\eta}\,a^2\,\partial_{\eta} - \frac{\Delta}{a^2} + m^2\right]\,\phi(\eta, x) = 0.$$

$$g_k(\eta) = \eta^{3/2} h(k\eta) / \sqrt{2}$$

 $h(k\eta)$ — solution o the Bessel equation

$$\phi(\eta, \vec{x}) = \int d^3k \left[a_k g_k(\eta) e^{-i \vec{k} \cdot \vec{x}} + a_k^+ g_k^*(\eta) e^{i \vec{k} \cdot \vec{x}} \right],$$

IV Tree-level two-point function:

Free Hamiltonian $H(\eta) = a^2(\eta) \int d^3x \, T_{00}(\eta)$

$$H_0(\eta) = \int d^3k \, \left[a_k^+ \, a_k \, A_k(\eta) + a_k \, a_{-k} \, B_k(\eta) + c.c. \right],$$

$$A_k(\eta) = \frac{a^2(\eta)}{2} \left\{ \left| \frac{dg_k}{d\eta} \right|^2 + \left[k^2 + a^2(\eta) \, m^2 \right] \, |g_k|^2 \right\},$$

$$B_k(\eta) = \frac{a^2(\eta)}{2} \left\{ \left(\frac{dg_k}{d\eta} \right)^2 + \left[k^2 + a^2(\eta) \, m^2 \right] \, g_k^2 \right\}.$$

Solution of the KG equation and of $B_k = 0$ do not coincide.

Hence, H_0 is not diagonal.

E.g. Bunch-Davies harmonics

$$g_k(\eta) \equiv \frac{\sqrt{\pi} \, \eta^{\frac{3}{2}} \, e^{-\frac{\pi \, \mu}{2}}}{2} \mathcal{H}_{i\,\mu}^{(1)}(k\,\eta), \quad \mu = \sqrt{m^2 - \frac{9}{4}},$$

 $\mathcal{H}_{i\mu}^{(1)}(x)$ is the Hankel function. For them $B_k(\eta \to \infty) \to 0$

Nonstationary situation. Then Retarded propagator:

$$D^{R}(\eta_{1}, \eta_{2}|\vec{r}) = \theta(\eta_{1} - \eta_{2}) \langle [\phi(\eta_{1}, 0), \phi(\eta_{2}, \vec{r})] \rangle$$

And Keldysh propagator

$$D^{K}(\eta_{1}, \eta_{2}|\vec{r}) = \frac{1}{2} \langle \{\phi(\eta_{1}, 0), \phi(\eta_{2}, \vec{r})\} \rangle$$

We define

$$d^{K}(\eta_{1}, \eta_{2}|\vec{p}) = (\eta_{1} \eta_{2})^{-\frac{3}{2}} \int d^{3}r \, D^{K}(\eta_{1}, \eta_{2}|\vec{r}) \, e^{-i\vec{p}\cdot\vec{r}}$$

Tree-level

$$d_0^K(p\eta_1, p\eta_2) = \frac{1}{2} \left[h(p\eta_1) h^*(p\eta_2) + h^*(p\eta_1) h(p\eta_2) \right] \left\langle a_p a_p^+ \right\rangle + h(p\eta_1) h(p\eta_2) \left\langle a_p a_{-p} \right\rangle + h.c.,$$

If we average wrt the "vacuum" state for the given choice of harmonics:

$$\langle a_p^+ a_p \rangle = 0, \quad \langle a_p a_{-p} \rangle = 0, \quad \langle a_p^+ a_{-p}^+ \rangle = 0$$

And

$$D^{K}(\eta_{1}, \eta_{2}, |\vec{x} - \vec{y}|) = C_{1} \left(z^{2} - 1\right)^{-\frac{1}{2}} P^{1}_{-\frac{1}{2} + i\mu}(z) + C_{2} \left(z^{2} - 1\right)^{-\frac{1}{2}} Q^{1}_{-\frac{1}{2} + i\mu}(z),$$

 P_{ν}^{1} and Q_{ν}^{1} — associated Legendre functions

$$z=1+rac{(\eta_1-\eta_2)^2+|ec x-ec y|^2}{2\eta_1\,\eta_2}$$
 — hyperbolic distance between $(\eta_1,ec x)$ and $(\eta_2,ec y)$

 $C_{1,2}$ — complex constants. Depend on the particular choice of the Harmonics.

E.g. for the BD harmonics $C_2 = 0$ — analytical continuation from the sphere

One-loop two-point function:

$$d_1^K(p\eta_1, p\eta_2) = \frac{1}{2} \left[h(p\eta_1) h^*(p\eta_2) + h^*(p\eta_1) h(p\eta_2) \right] 2 n_p + h(p\eta_1) h(p\eta_2) \kappa_p + h.c.$$

$$n_{p}(\eta) \equiv \langle a_{p}^{+} a_{p} \rangle = \frac{\lambda^{2}}{4 \pi^{2}} \int_{p}^{1/\eta} \frac{dk}{k} \iint_{\infty}^{0} dx_{1} dx_{2} (x_{1} x_{2})^{\frac{1}{2}} \times h \left[\frac{p}{k} x_{1} \right] h^{*} \left[\frac{p}{k} x_{2} \right] h^{2}(x_{1}) \left[h^{*}(x_{2}) \right]^{2}$$

$$\kappa_{p} \equiv \langle a_{p} a_{-p} \rangle = \frac{\lambda^{2}}{2 \pi^{2}} \int_{p}^{1/\eta} \frac{dk}{k} \int_{\infty}^{0} dx_{1} \int_{\infty}^{x_{1}} dx_{2} (x_{1} x_{2})^{\frac{1}{2}} \times h^{*} \left[\frac{p}{k} x_{1} \right] h^{*} \left[\frac{p}{k} x_{2} \right] h^{2}(x_{1}) \left[h^{*}(x_{2}) \right]^{2}.$$

Even if we start with $n_p = 0$, $\kappa_p = 0$. They are generated at loops — pair creation.

Feynman diagrammatic technic does not lead to terms $\propto h(p\eta_1) h(p\eta_2)$ and c.c..

We are interested in the leading IR terms $p\eta_{1,2} \rightarrow 0$

For BD harmonics:

$$h(x) \approx A_{+} x^{i\mu} + A_{-} x^{-i\mu}$$
, as $x \to 0$

And

$$d_{0+1}^{K}(p\eta_{1}, p\eta_{2}) \approx \frac{\coth(\pi\mu)}{2\mu} s^{i\mu} + A_{+} A_{-}^{*} (p\eta)^{2i\mu} \times \left\{ 1 + \frac{\lambda^{2}}{2\pi^{2}\mu} \log\left(\frac{1}{p\eta}\right) \iint_{\infty}^{0} dx_{1} dx_{2} (x_{1}x_{2})^{\frac{1}{2}} h^{2}(x_{1}) [h^{*}(x_{2})]^{2} \times \left[\theta(x_{1} - x_{2}) \left(\frac{x_{1}}{x_{2}}\right)^{i\mu} - \theta(x_{2} - x_{1}) \left(\frac{x_{1}}{x_{2}}\right)^{-i\mu} \right] \right\} + c.c.$$

$$s=\frac{\eta_1}{\eta_2},\ \eta=\sqrt{\eta_1\,\eta_2}$$

From this answer we see that $n_p \sim |\kappa_p|$. Hence, BD harmonics are not suitable for the kinetic equation.

Side remark:

Analytical continuation from the sphere — renormalization of the mass only

$$\mu \to \mu + \Delta \mu$$
, $\Delta \mu$ is complex

Then the corrections would have had the form:

$$d_1^K (p\eta_1, p\eta_2) = \frac{\coth(\pi\mu)}{2\mu} s^{i\mu} i \,\Delta\mu \,\log(s) + A_+ \,A_-^* (p\,\eta)^{2\,i\,\mu} \,2\,i\,\Delta\mu \,\log(p\eta) + c.c.$$

Does not coincide with that what we actually get.

One loop result for the out–Jost functions:

$$h(x) = \sqrt{\frac{\pi}{\sinh(\pi\mu)}} J_{i\mu}(x).$$

$$h(x) \sim x^{i\mu}, x \to 0$$

$$h(x) = \sqrt{\frac{\pi}{4 \sinh(\pi \mu) x}} \left[e^{ix} + e^{-\pi \mu - ix} \right], \quad x \to \infty$$

The leading IR contribution to the two-point function:

$$d_{0+1}^{K}(p\eta_{1}, p\eta_{2}) \approx \frac{1}{2\mu} \left[s^{i\mu} + s^{-i\mu} \right] \times \left\{ 1 + \frac{\lambda^{2}}{2\pi^{2}\mu} \log \left(\frac{1}{p\eta} \right) \left| \int_{\infty}^{0} dx \, x^{\frac{1}{2} + i\mu} \left[h^{2}(x) - \frac{\pi \, e^{-\pi\mu}}{4 \, \sinh(\pi \, \mu) \, x} \right] \right|^{2} \right\}$$

The κ_p is suppressed in comparison with n_p in the IR limit. Suitable for the kinetic equation.

V. The kinetic equation:

$$\frac{dn_{p}(\eta)}{d\log(\eta)} = \frac{\lambda^{2}}{\pi^{2}} \int_{0}^{\infty} dk \, \eta \, (k\eta)^{\frac{1}{2}} \times \\
\times \left\{ F_{1} \times \left[(1+n_{p}) \, n_{k} \, n_{p-k} - \, n_{p} \, (1+n_{k}) \, (1+n_{p-k}) \right] (\eta') + \\
+ 2 \, F_{2} \times \left[n_{k} \, (1+n_{k-p}) \, (1+n_{p}) - \, (1+n_{k}) \, n_{k-p} \, n_{p} \right] (\eta') + \\
+ F_{3} \times \left[(1+n_{k}) \, (1+n_{p+k}) \, (1+n_{p}) - \, n_{k} \, n_{p+k} \, n_{p} \right] (\eta') \right\}$$

$$F_{1} = \operatorname{Re}\left(C^{*}\left[\frac{p}{k}k\eta, k\eta, \left(\frac{p}{k}-1\right)k\eta\right] \times \int_{k\eta_{0}}^{k\eta} dy'(y')^{\frac{1}{2}}C\left[\frac{p}{k}y', y', \left(\frac{p}{k}-1\right)y'\right]\right)$$

$$F_2 = \operatorname{Re}\left(C^*\left[k\eta, \left(1 - \frac{p}{k}\right) k\eta, \frac{p}{k} k\eta\right] \times \int_{k\eta_0}^{k\eta} dy'(y')^{\frac{1}{2}} C\left[y', \left(1 - \frac{p}{k}\right) y', \frac{p}{k} y'\right]\right)$$

$$F_{3} = \operatorname{Re}\left(D^{*}\left[k\eta, \left(\frac{p}{k}+1\right) k\eta, \frac{p}{k} k\eta\right] \times \right.$$
$$\left. \times \int_{k\eta_{0}}^{k\eta} dy' (y')^{\frac{1}{2}} D\left[y', \left(\frac{p}{k}+1\right) y', \frac{p}{k} y'\right]\right)$$

 η_0 is the moment of time when we switch on the interactions; $C[x,y,z]=h^*(x)\,h(y)\,h(z),\; D[x,y,z]=h(x)\,h(y)\,h(z)$

Solution in the expanding patch

In the limit $p\eta \to 0$ $n(p\eta) \to 0$. Then

$$(1 + n_p) n_k n_{p-k} - n_p (1 + n_k) (1 + n_{p-k}) \approx -n(p\eta)$$

$$n_k (1 + n_{k-p}) (1 + n_p) - (1 + n_k) n_{k-p} n_p \approx n(k\eta)$$

$$(1 + n_k) (1 + n_{p+k}) (1 + n_p) - n_k n_{p+k} n_p \approx 1$$

Furthermore, $n(x) \gg n(y)$ for $y \gg x$

$$\begin{split} \frac{dn(x)}{d\log(x)} &= \Gamma \, n(x) - \Gamma', \\ \Gamma &= \frac{\lambda^2}{2\pi^2 \, \mu} \, \left| \int_{\infty}^0 dy \, y^{\frac{1}{2} - i \, \mu} \, \left[h^2 \, (y) - \frac{\pi \, e^{-\pi \mu}}{4 \, \sinh(\pi \, \mu) \, |y|} \right] \right|^2, \\ \Gamma' &= \frac{\lambda^2}{2 \, \pi^2 \, \mu} \, \left| \int_{\infty}^0 dy \, y^{\frac{1}{2} + i \, \mu} \, \left[h^2 \, (y) - \frac{\pi \, e^{-\pi \mu}}{4 \, \sinh(\pi \, \mu) \, |y|} \right] \right|^2 \end{split}$$

I.e.
$$n(p\eta) = \frac{\Gamma'}{\Gamma} \left[C \left(p \, \eta \right)^{\Gamma} + 1 \right], \, \frac{\Gamma'}{\Gamma} \approx e^{-2 \, \pi \mu} \ll 1$$

C — integration constant. Depends on the initial conditions. C=-1 — above one—loop result.

Solution in the contracting patch

The same equation as in expanding patch with the opposite relative sign between RHS and LHS.

$$\eta \to \infty$$
 — future.

As $p\eta \to 0$ we expect $n_p(\eta)$ to be independent of p and $n(\eta) \gg 1$

$$(1 + n_p) n_k n_{p-k} - n_p (1 + n_k) (1 + n_{p-k}) \approx -n^2(\eta)$$

$$n_k (1 + n_{k-p}) (1 + n_p) - (1 + n_k) n_{k-p} n_p \approx n^2(\eta)$$

$$(1 + n_k) (1 + n_{p+k}) (1 + n_p) - n_k n_{p+k} n_p \approx n^2(\eta)$$

$$\frac{dn(\eta)}{d\log(\eta)} = \bar{\Gamma} n^2(\eta), \quad \text{where} \quad \bar{\Gamma} \approx \frac{\lambda^2 \mu^2}{2 \pi^2 m^2 \left(m^2 - \frac{3}{2}\right)} > 0$$

$$n(\eta) \sim \frac{1}{\bar{\Gamma} \log \frac{\eta_0}{\eta}}$$

 $\eta < \eta_0 = e^{const/\lambda^2} \gg 1$. A — integration constant.