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Equivalence theorems (A.A.S., 1991): Path integral representation for
the scattering matrix

S =
∫

exp{i
∫
L(ϕ)dx}dµ(ϕ); limt→±∞ϕ(x) = ϕout,in(x) (1)

Let us make the change of variables depending on the time derivatives
of the field:

ϕ→ ϕ′(ϕ, ϕ̇) (2)

If the change (2) does not change the asymptotic conditions, then the
only effect of such transformation is the appearance of a nontrivial
jacobian

L(ϕ)→ L̃(ϕ′) = L[ϕ(ϕ′)] + c̄a
δϕa

δϕ′b
cb (3)

Unitarity?



The new Lagrangian is invariant with respect to
the supertransformations

δϕ′a = caε

δca = 0; δc̄a =
δL

δϕa
(ϕ′)ε (4)

On mass shell these transformations are nilpotent and generate a
conserved charge Q. In this case there exists an invariant subspace of
states annihilated by Q, which has a semidefinite norm. For asymptotic
space this condition reduces to

Q0|φ >as= 0 (5)

The scattering matrix is unitary in the subspace which contains only
excitations of the original theory. However the theories described by
the L and the L̃ are different, and only expectation values of the
gauge invariant operators coincide.



Using this method one can construct a renormalizable formulation of
nonabelian gauge theories free of the Gribov ambiguity.
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To deal with gauge theories one should impose a gauge condition.

Differential gauge conditions: L(Aµ, ϕ) = 0→ Gribov ambiguity.

Algebraic gauge conditions: L̃(Aµ, ϕ) = 0 → absence of the manifest
Lorentz invariance and other problems.



Coulomb gauge

∂iAi = 0

A′i = (AΩ)i

4αa + igεabc∂i(A
b
iα
c) = 0 (6)

This equation has nontrivial solutions decreasing at spatial infinity→Gribov
ambiguity. Any differential gauge does not choose a unique representative
in the class of gauge equivalent fields!

In perturbation theory the only solution is α = 0. A problem of
unambiguos quantization of nonabelian gauge theories beyond
perturbation theory remains unsolved.



Weinberg-Salam model

L = −1/4F aµνF
a
µν − 1/4GaµνG

a
µν + iL̄γµ(∂µ +

ig

2
τaAaµ +

ig1

2
Bµ)L

+iR̄γµ(∂µ + ig1Bµ)R+ |∂µϕ+
ig

2
τaAaµϕ+

ig1

2
Bµϕ|2 −

−G{(L̄ϕ)R+ R̄(ϕ∗L)}+
m2

2
(ϕ∗ϕ)− λ2(ϕ∗ϕ)2 (7)

where

ϕ(x) = (ϕ1(x), ϕ2(x)) =
√

2−1(iB1 +B2, σ − iB3 +
√

2µ) (8)

In perturbation theory all predictions fit the experiment very well.



However there are certain questions to be answered

1. Where is the Higgs meson? (LHC).

2. Is the model valid beyond perturbation theory?

3. Is it possible to derive the Weinberg-Salam model from some grand-
unified model?

4. Quantization of the Weinberg-Salam model beyond the perturbation
theory?



SU(2) Higgs-Kibble model

.

L = −1/4F aµνF
a
µν + (Dµϕ)∗(Dµϕ)− λ2(ϕ∗ϕ− µ2)2 (9)

Gauge ransformations:

δAaµ = ∂µη
a + gεabcAbµη

c,

δBa = µ
√

2ηa +
g

2
εabcBbηc +

g

2
σηa.label4 (10)

Unitary gauge Ba = 0 The spectrum: Three components of the
massive vector field Aai . One scalar field (Higgs meson) σ.

Unitarity is obvious, but there is no renormalizability.



Renormalizable gauges: ∂µAaµ = 0.

The spectrum:

Aai , σ, unphysical components of Aaµ, Faddeev-Popov ghosts c̄a, ca,
Goldstone bosons Ba.

The unitarity in the physical subspace should be proven!

Nonuniqueness of the gauge fixing does not allow to do that beyond
perturbation theory.



An alternative formulation of the Higgs-Kibble model.

L = −
1

4
F aµνF

a
µν + (Dµϕ

+)∗(Dµϕ−) + (Dµϕ
−)∗(Dµϕ+)

+(Dµϕ)∗(Dµϕ)− λ2(ϕ∗ϕ− µ2)2

−[(Dµb)
∗(Dµe) + (Dµe)

∗(Dµb)] (11)

Here the field ϕ is the complex doublet describing the Higgs meson,
and the fields ϕ± are new auxiliary fields. The fields b, e have a similar
structure, but correspond to the anticommuting fields. The shift

ϕ−(x)→ ϕ−(x)− m̂; ϕ(x)→ ϕ(x)− µ̂ (12)

where m̂ and µ̂ are the coordinate-independent condensates

m̂ = (0,m/g); µ̂ = (0, µ/g) (13)

generates the mass term for the vector field.



The new Lagrangian describing the massive vector field is

L = −
1

4
F aµνF

a
µν + (Dµϕ

+)∗(Dµϕ−) + (Dµϕ
−)∗(Dµϕ+)

−[(Dµϕ
+)∗(Dµm̂) + (Dµm̂)∗Dµϕ+]

−[(Dµb)
∗(Dµe) + (Dµe)

∗(Dµb)] + (Dµϕ)∗(Dµϕ)

−[(Dµϕ)∗(Dµµ̂) + (Dµµ̂)∗(Dµϕ)]

+(Dµµ̂)∗(Dµµ̂)− λ2[(ϕ− µ̂)∗(ϕ− µ̂)− µ2]2 . (14)

After the shift both the fields ϕ and ϕ− become the gauge fields:

δϕa− = mηa +
g

2
εabcϕb−η

c +
g

2
ϕ0
−η

a

δϕa = µηa +
g

2
εabcϕbηc +

g

2
ϕ0ηa (15)

A gauge condition may be imposed on the fields Aaµ, ϕa, ϕa−.



We choose the gauge ϕa− = 0 This is an algebraic gauge, which is
manifestly Lorentz invariant and, as we shall see, renormalizable.

To get rid off the ambiguity completely we introduce new variables

ϕ0
− =

2m

g
(exp{

gh

2m
} − 1); ϕa− = M̃ϕ̃a−

ϕa+ = M̃−1ϕ̃a+; ϕ0
+ = M̃−1ϕ̃0

+

e = M̃−1ẽ; b = M̃b̃ (16)

M̃ = 1 +
g

2m
ϕ0
− = exp{

gh

2m
} (17)

At the surface ϕa− = 0, the equation (ϕ̃Ω
−)a = 0, implies ηa = 0.

No ambiguity!



The effective Lagrangian in the gauge ϕa− = 0:

L̃ = −
1

4
F aµνF

a
µν + ∂µh∂µϕ̃

0
+ −

g

2m
∂µh∂µhϕ̃

0
+

+mϕ̃a+∂µA
a
µ − [((Dµb̃)

∗+
g

2m
b̃∗∂µh)(Dµẽ−

g

2m
ẽ∂µh) + h.c.]

+
mg

2
A2
µϕ̃

0
+ + g∂µhA

a
µϕ̃

a
+ +

µ2

2
AaµA

a
µ + µϕa∂µA

a
µ + . . . (18)

The mixed term may be eliminated by the change of variables

ϕ̃a+ → ϕ̃a+ −
µ

m
ϕa (19)

The divergency index of a diagram with LΦ external lines of the field
Φ:

n = 4− 2Lϕ0
+
− 2Lϕa+

− LA − Le − Lb − Lh − LB − Lσ (20)

The model is explicitly renormalizable!



Unitarity.

The model includes many unphysical (ghost) fields:ϕα+, (α = 0,1,2,3, ), h,
ϕa(Ba)(a = 1,2,3), eα, bα, Aa0. The unitarity in the physical subspace,
including only Aai , σ should be proven.

The Lagrangian L was invariant with respect to the supersymmetry
transformaions:

δϕa− = −ba

δϕ0
− = −b0

δea = ϕa+
δe0 = ϕ0

+
δb = 0

δϕα+ = 0

α = 0,1,2,3. (21)



The nonrenormalized effective action in the gauge ϕ̃a− = 0 is invariant
with respect to simultaneous BRST -transformations and the transformations,
induced by the supersymmetry (eq.21). It may be written in the form:

A =
∫
{L̃+ λaϕ̃a−+mc̄aca + b̃ac̄a}dx (22)

Integrating over c̄, c we get the effective action invariant with respect
to the BRST transformation and supersymmetry transformation induced
by (21)after the change ca = b̃a/m. This action is also invariant
with respect to the global SU(2) transformations of the variables
Aaµ, ϕ̃

a
+, ẽ, b̃, ϕ.

This symmetries are sufficient to guarantee the gauge invariance of
the renormalized action and unitarity of the theory described by this
action.



The "new BRST transformations"look as follows:

δAaµ =
1

m
(Dµb̃)

a; δh = −b̃0

δϕ̃a+ =
g

2m
ϕ̃0

+b̃
a +

g

2m
εabcϕ̃b+b̃

c −
g

2m
ϕ̃a+b̃

0

δϕ̃0
+ = −

g

2m
(ϕ̃a+b̃

a + ϕ̃0
+b̃

0)

δẽa =
g

2m
(ẽab̃0 − ẽ0b̃a − εabcẽb̃bc) + ϕ̃a+

δẽ0 =
g

2m
(ẽab̃a + ẽ0b̃0) + ϕ̃0

+

δb̃a = −
g

2m
εabc̃bb̃bc

δϕa = µ
b̃a

m
+

g

2m
εabcϕb̃ba +

g

2m
b̃aϕ0

δϕ0 = −
g

2m
b̃aϕa (23)



Two new counterterms compatible with the symmetry (23) and residual
global SU(2) invariance arise:

G = α
∫
d4x

[(
ϕ̃0

+ +
g

2m
ϕ̃a−ϕ̃

a
+ +

g

2m
(ẽ0b̃0 + ẽab̃a)

)2

+
(
ϕ̃a+ −

g

2m
ϕ̃0

+ϕ̃
a
− −

g

2m
εabcϕ̃b−ϕ̃

c
+ +

g

2m
(ẽab̃0 − ẽ0b̃a − εabcẽb̃bc

)2]
.(24)

G1 = β
∫
d4x

((
ϕ̃0

+ +
g

2m
ϕ̃a−ϕ̃

a
+

)
[(ϕ− µ̂)∗(ϕ− µ̂)− µ2] +

g

2m
(ẽab̃a

+ẽ0b̃0)[(ϕ− µ̂)∗(ϕ− µ̂)− µ2]
)
. (25)

Here α and β are arbitrary constants. This new terms do not involve
the derivatives and therefore do not change the structure of the
nilpotent charge Q. This invariance provides the unitarity of the S-
matrix in the space including only physical states Aai , σ



Now we show that the renormalized action possesses the same symmetry
as the unrenormalized one up to renormalization of the parameters
and a redefinition of the fields.

Let Γ is the generating functional for the vertex functions and Γ0

the similar functional for the tree diagrams, including apart from the
classical effective action also variation of the fields Φ connected with
the antifields Φ∗.

The invariance with respect to the "new BRST transformations"may
be expressed as the ST-identity for the Γ

S(Γ) =
∫
d4x

∑
Φ

δΓ

δΦ∗(x)

δΓ

δΦ(x)
= 0 . (26)



If an invariant regularization of our theory exists, the effective action
Γ̂, including all the counterterms, satisfies the same equation

S(Γ̂) = 0 (27)

The most general solution of this equation compatible with the degree
of divergency and the residual SU(2) invariance is obtained from Γ0

by the following redefinition of the parameters:

g′ = Zgg , m′ = Zmmα′ =
Zα

Z2
g
α ,

β′ =
Zβ

ZgZm
β , λ′ = Zλλ (28)



The fields must be also redefined:

ẽ′ = Z1ẽ , b̃′ = Zmb̃ , Aa
′
µ = Z2A

a
µ , h′ = ZmZ3h ,

ϕ0′ = z1ϕ
0 , ϕa

′
= z1ϕ

a ,

ϕ̃a
′

+ = Z4ϕ̃
a
+ + Z5∂A

a + Z6
1

m
∂µhA

aµ + Z7(ẽ0b̃a − ẽab̃0 − εabcẽb̃bc) ,

ϕ̃0′
+ = Z8ϕ̃

0
+ + Z9

1

m
�h+ Z10

1

m2
∂µh∂

µh+ Z11A
2 + Z12(ẽ0b̃0 + ẽab̃a)

+z2

[
(ϕ0 + µ)2 + ϕ2

a − µ2
]
. (29)

The functional Γ̂[g′,m′, α′, β′, λ′,Φ′] =

Γ0[Zgg, Zmm,Zα/Z2
mα,Zβ/ZgZmβ, Zλλ,Φ

′] is the most general solution
of the equation (27)compatible with the power counting.



Conclusion

1.A unique covariant quantization of the Higgs-Kibble (Weinberg-
Salam) model beyond the perturbation theory is possible.

The model is renormalizable in the ambiguity free Lorentz invariant
gauge.

The necessary counterterms preserve the symmetries, which provide
the unitarity of the renormalized theory and preserve the gauge invariance.
However a redefinition of the parameters and the fields is needed.

The crucial role for all this consruction must be played by the nonperturbative
calculations.


