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Outline

® ETOE
® Dilaton-Higgs Cosmology

® Conclusions
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An alternative to SUSY, large
extra dimensions, technicolor, etc

Effective
Theory

Of
Everything
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Definitions

“Effective”: valid up to the Planck scale, quantum gravity problem is not
addressed. No new particles heavier than the Higgs boson.

May be even fundamental, if gravity is “asymptotically safe”

( )

“Everything”: neutrino masses and oscillations, dark matter, baryon
asymmetry of the Universe, inflation, and presence of dark energy.
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Particle content of ETOE

Particles of the SM
_|_

graviton
_|_

dilaton

_|_
3 Majorana leptons




Symmetries of ETOE

s gauge: SUB)xSU(2)xU(1) —
the same as in the Standard
Model
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Symmetries of ETOE

® Restricted coordinate transformations: TDIFF, det[—g] = 1
(Unimodular Gravity).

Equations of motion for Unimodular Gravity:

1 1
R, — Zg,wR = 8GN (Tyw — Zg”VT)

Perfect example of “degravitation” - the “g,,,," part of
energy-momentum tensor does not gravitate. Solution of the “technical
part" of cosmological constant problem - quartically divergent matter
loops do not change the geometry. But - no solution of the “main”
cosmological constant problem - why A < M#? Scale invariance can
help!
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Symmetries of ETOE

® Exact quantum scale invariance
# No dimensionful parameters
# Cosmological constant is zero
o Higgs mass Is zero
» these parameters cannot be generated radiatively, if
regularisation respects this symmetry
® Scale invariance must be spontaneously broken
# Newton constant is nonzero
# W-mass is honzero

® Agcp Isnonzero
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Lagrangian of ETOE

Scale-invariant Lagrangian

1
Lymsm = Lsvmm—o] + Lo + E(Bux)z — V(p,Xx)

+ (N7iv* 8, N1 — har LaN1@ — frN1“Nrx + h.c.) ,

Potential ( x - dilaton, ¢ - Higgs, ¢y = 2h?):
o 2
V(e,x) = A (soTso — axz) + Bx*,

Gravity part

Lo =— (&7 +2%ne’e)
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Roles of different particles

The roles of dilaton:

9

© o o o

determine the Planck mass

give mass to the Higgs

give masses to 3 Majorana leptons
lead to dynamical dark energy

Note: dilaton is a Goldstone boson of broken dilatation symmetry
—> only derivative couplings to matter, no fifth force!

Roles of the Higgs boson:

9

9

give masses to fermions and vector bosons of the SM

provide inflation
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mass -
charge -

name -

Quarks

Leptons

Three Generations

of Matter (Fermions) spin %2

New fermions: thevMSM
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Leptons
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of Matter (Fermions) spin %
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Role of N7 with mass in keV region: dark matter

Role of Ny, N3 with mass in 100 MeV — GeV region:

“give” masses to

neutrinos and produce baryon asymmetry of the Universe
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The couplings of thev MSM

Particle physics part, accessible to low energy experiments: the
vMSM. Mass scales of the vMSM:
Mj; < Mw (No see-saw)

Consequence: small Yukawa couplings,

m M
F. 5~ VMatm Mi ~ (107% — 10713),
(¥

here v ~ 174 GeV is the VEV of the Higgs field,

maetm =~ 0.05 eV is the atmospheric neutrino mass difference.
Small Yukawas are also necessary for stability of dark matter and
baryogenesis (out of equilibrium at the EW temperature).
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For A > 0, (3 = 0 the scale invariance can be spontaneously broken.

The vacuum manifold:

2 O 4
ho—xxo

Particles are massive, Planck constant is non-zero:

Mz, ~ My ~ My ~ My o X0, Mp; ~ Xo

Phenomenological requirement:

,02
~ 10738 « 1

(8 e )

Pl
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Scale invariance + unimodular gravity

Solutions of scale-invariant UG are the same as the solutions of
scale-invariant GR with the action

S:—/d‘*az\/fg

R
(&xx® + 2€neTp) o TA+-]

Physical interpretation: Einstein frame

Guv = Ux)%Gu s (ExX® + ER?)Q* = M3

A 1s not a cosmological constant, it Is the
strength of a peculiar potential!
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Relevant part of the Lagrangian (scalars + gravity) in Einstein frame:

—~

R
LE=+V—g (-Mlzaz + K — Ug(h, X)) :

K - complicated non-linear kinetic term for the scalar fields,
_ Q2 1 2 1 2 2 2
K = E(auX) + E(auh) ) ) —3Mp(8,9)" .

The Einstein-frame potential Ug (h, x):

4(€XX2 _|_ £hh2)2 _|_ (€XX2 4+ shh2)2

A (h? — 2x2)° A
UE(h9X) :M; ( A > ] ’
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Potential for the Higgs field and dilaton in the Einstein frame.

Left: A > 0, right A < 0.

50% chance (A < 0): inflation + late collapse

50% chance (A > 0): inflation + late acceleration
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Strategy

Take arbitrary initial conditions for the Higgs and the dilaton
Find the region on the {x, h} plane that lead to inflation
Find the region on the {x, h} plane that lead to exit from inflation

Find the region on the {x, h} plane that lead to observed
abundance of Dark Energy
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Initial conditions

] Orobs
(g < S5
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Trajectories

1000 2000

~2000  —1000
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Generic semiclassical initial conditions lead to:

® the Universe, which was inflating in the past

® the Universe with the Dark Energy abundance smaller, than
observed

Quantum initial state to explain the DM-DE coincidence problem?
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Inflation-dark energy relation

Value of n; is determined by &5, and &,., and equation of state of DE w
by &, = ns — w relation:
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Conclusions

ETOE gives:
® Dynamical origin of all mass scales
® Hierarchy problem gets a different meaning - an alternative (to
SUSY, techicolor, little Higgs or large extra dimensions) solution of
it may be possible.
® Cosmological constant problem acquires another formulation.
® Natural chaotic cosmological inflation
® Low energy sector contains a massless dilaton
® There is Dark Energy even without cosmological constant
® There is direct relation between inflation and DE equation of state
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Problems to solve

® Though the stability of the electroweak scale against quantum
corrections may be achieved, it is unclear why the electroweak
scale is so much smaller than the Planck scale (or why ¢ < 1).

[Dubna, 4 October 2011]- p. 25




Problems to solve

Though the stability of the electroweak scale against quantum
corrections may be achieved, it is unclear why the electroweak
scale is so much smaller than the Planck scale (or why ¢ < 1).

Why eventual cosmological constant is zero (or why 3 = 0)?

[Dubna, 4 October 2011]- p. 25




Problems to solve

Though the stability of the electroweak scale against quantum
corrections may be achieved, it is unclear why the electroweak
scale is so much smaller than the Planck scale (or why ¢ < 1).

Why eventual cosmological constant is zero (or why 3 = 0)?

Renormalizability

[Dubna, 4 October 2011]- p. 25




°

Problems to solve
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Problems to solve

Though the stability of the electroweak scale against quantum
corrections may be achieved, it is unclear why the electroweak
scale is so much smaller than the Planck scale (or why ¢ < 1).

Why eventual cosmological constant is zero (or why 3 = 0)?
Renormalizability
Unitarity

High energy limit
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Happy birthday, Dima!
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