Флуктуационные явления в анизотропной гидродинамике

Коваленко А. М.

Научный руководитель: доктор физ.-мат. наук, Леонидов А. В.

13 декабря 2023г. ОИЯИ

Столкновения тяжёлых ядер

Столкновения тяжёлых ядер

Michael Strickland. «Anisotropic Hydrodynamics: Three lectures.» arXiv:1410.5786

Проблемы гидродинамического описания

Проблемы диссипативной гидродинамики:

• Разница давлений в рамках диссипативных теорий приводила к появлению отрицательного давления. То есть существуют области фазового . пространства, где одночастичная функция распределения становилась отрицательной.

• Рост гидродинамических поправок, которые становились соизмеримы с вкладами от идеальной жидкости.

• Фактически, анизотропия приводила к необходимости учёта градиентов всех порядков.

Тензор энергии-импульса:

$$T_{LRF}^{\mu\nu} = \begin{pmatrix} \varepsilon & 0 & 0 & 0 \\ 0 & P_{\perp} & 0 & 0 \\ 0 & 0 & P_{\perp} & 0 \\ 0 & 0 & 0 & P_{\parallel} \end{pmatrix}$$

Тензор энергии-импульса:

$$T_{LRF}^{\mu\nu} = \begin{pmatrix} \varepsilon & 0 & 0 & 0 \\ 0 & P_{\perp} & 0 & 0 \\ 0 & 0 & P_{\perp} & 0 \\ 0 & 0 & 0 & P_{\parallel} \end{pmatrix}$$

Базис векторов:

$$\begin{split} U_{LRF}^{\mu} &= (1,0,0,0) \\ X_{LRF}^{\mu} &= (0,1,0,0) \\ Y_{LRF}^{\mu} &= (0,0,1,0) \\ Z_{LRF}^{\mu} &= (0,0,0,1) \end{split} \qquad \begin{array}{l} \mathsf{bycr} \\ \mathsf{bycr}$$

Метрический тензор может быть выражен следующим образом:

 $g^{\mu\nu}=U^\mu U^\nu-X^\mu X^\nu-Y^\mu Y^\nu-Z^\mu Z^\nu$

Тензор энергии-импульса симметричен и может быть выражен как

$$T^{\mu\nu} = ag^{\mu\nu} + \sum_{i} a_{i}X_{i}^{\mu}X_{i}^{\nu} + \sum_{\gamma > \rho} a_{\gamma\rho} \left(X_{\gamma}^{\mu}X_{\rho}^{\nu} + X_{\rho}^{\mu}X_{\gamma}^{\nu}\right)$$

Метрический тензор может быть выражен следующим образом:

$$g^{\mu\nu} = U^{\mu}U^{\nu} - X^{\mu}X^{\nu} - Y^{\mu}Y^{\nu} - Z^{\mu}Z^{\nu}$$

Тензор энергии-импульса симметричен и может быть выражен как

$$T^{\mu\nu} = ag^{\mu\nu} + \sum_{i} a_{i}X^{\mu}_{i}X^{\nu}_{i} + \sum_{\gamma > \rho} a_{\gamma\rho} \left(X^{\mu}_{\gamma}X^{\nu}_{\rho} + X^{\mu}_{\rho}X^{\nu}_{\gamma}\right)$$
$$a = \varepsilon,$$
$$a = \varepsilon,$$
$$-a + a_{1} = P_{\perp},$$
$$-a + a_{2} = P_{\perp},$$
$$-a + a_{3} = P_{\parallel}.$$

$$T^{\mu\nu} = (\varepsilon + P_{\perp})U^{\mu}U^{\nu} - P_{\perp}g^{\mu\nu} + (P_{\parallel} - P_{\perp})Z^{\mu}Z^{\nu}$$

Видно, что вектор Z^{μ} выделяет направление О
z в модели, которое будем также называть осью (направлением) анизотропии.

Одночастичная функция распределения:

$$f_{\text{aniso}}(x,p) = f_{\text{iso}}\left(\frac{\sqrt{p^{\mu} \Xi_{\mu\nu}(x) p^{\nu}}}{\Lambda(x)}, \frac{\mu(x)}{\Lambda(x)}\right)$$

LRF: $p^{\mu} \Xi_{\mu\nu}(x) p^{\nu} \longrightarrow \mathbf{p}^{2} + \xi(x) p_{\parallel}$, где $\xi(x)$ - параметр анизотропии.

Тензор энергии-импульса:

$$T^{\mu\nu} = \int Dp \, p^{\mu} p^{\nu} f(p,x) \, \Box = \, T^{\mu\nu} = (\varepsilon + P_{\perp}) U^{\mu} U^{\nu} - P_{\perp} g^{\mu\nu} - (P_{\perp} - P_{\parallel}) Z^{\mu} Z^{\nu}$$

где введён базис векторов

$$\begin{split} U_{LRF}^{\mu} &= (1,0,0,0) \\ X_{LRF}^{\mu} &= (0,1,0,0) \\ Y_{LRF}^{\mu} &= (0,0,1,0) \\ Z_{LRF}^{\mu} &= (0,0,0,1) \end{split} \qquad \begin{array}{l} U^{\mu} &= (u_{0}\cosh\vartheta, u_{x}, u_{y}, u_{0}\sinh\vartheta) \\ W^{\mu} &= (u_{1}\cosh\vartheta, \frac{u_{0}u_{x}}{u_{\perp}}, \frac{u_{0}u_{y}}{u_{\perp}}, u_{\perp}\sinh\vartheta) \\ Y^{\mu} &= (0, -\frac{u_{y}}{u_{\perp}}, \frac{u_{x}}{u_{\perp}}, 0) \\ Z^{\mu} &= (\sinh\vartheta, 0, 0, \cosh\vartheta) \end{split} \qquad \begin{array}{l} u_{0} &= \sqrt{1 + u_{x}^{2} + u_{y}^{2}} \\ u_{0} &= \frac{1}{2}\ln\frac{1 + v_{z}}{1 - v_{z}} \\ Y^{\mu} &= (0, -\frac{u_{y}}{u_{\perp}}, \frac{u_{x}}{u_{\perp}}, 0) \\ Z^{\mu} &= (\sinh\vartheta, 0, 0, \cosh\vartheta) \end{split}$$

Величины факторизуются на анизотропную и изотропную части:

Звуковые явления

Miklos Gyulassy, Dirk H. Rischke, Bin Zhang «Hot spots and turbulent initial conditions of quark-gluon plasmas in nuclear collisions»

L.M Satarov, Horst Stoecker, I.N Mishustin. «Mach shocks induced by partonic jets in expanding quark-gluon plasma»

Скорость звука

Wei-bo He et al., «Speed of sound in QCD matter», Phys.Rev.D 105 (2022) 9, 094024

CMS Collaboration, Extracting the speed of sound in the strongly interacting matter created in ultrarelativistic nuclear collisions, 11.09.2023

Волновое уравнение

Разложим температуру около некоторого постоянного состояния:

 $\Lambda(x) = \Lambda^{(0)} + \Lambda^{(1)}(x) + \dots$

Тогда, если принять $\xi \approx \mathit{const}$, получим разложение для остальных величин

$$\varepsilon(x,\xi) = R(\xi) \left(\varepsilon_{\rm iso}(\Lambda^{(0)}) + \frac{\partial \varepsilon_{\rm iso}(\Lambda)}{\partial \Lambda} \bigg|_{\Lambda = \Lambda^{(0)}} \Lambda^{(1)}(x) + \dots \right)$$

Линеаризуя уравнения движения $\partial_\mu T^{\mu
u}=0$, придём к волновому уравнению

$$\begin{split} \left(\partial_x^2 + \partial_y^2 + \kappa \partial_z^2\right) n^{(1)} &= (\kappa + 2) \partial_t^2 n^{(1)} \\ \text{где} \\ \kappa &= \frac{P_{\parallel}}{P_{\perp}} \\ \kappa &= \frac{1}{\sqrt{2 + \kappa}} = \sqrt{\frac{R_{\perp}(\xi)}{3R(\xi)}} \\ c_{s\parallel} &= \frac{\sqrt{\kappa}}{\sqrt{2 + \kappa}} = \sqrt{\frac{R_{\parallel}(\xi)}{3R(\xi)}} \end{split}$$

Волновое уравнение

Линеаризуя уравнения движения $\partial_\mu T^{\mu
u}=0$, придём к волновому уравнению

$$\begin{split} \left(\partial_x^2 + \partial_y^2 + \kappa \partial_z^2\right) n^{(1)} &= (\kappa + 2) \partial_t^2 n^{(1)} \\ \text{где} \\ \kappa &= \frac{P_{\parallel}}{P_{\perp}} \\ \kappa &= \frac{P_{\parallel}}{P_{\perp}} \\ c_{s\perp} &= \frac{1}{\sqrt{2 + \kappa}} = \sqrt{\frac{R_{\perp}(\xi)}{3R(\xi)}} \\ c_{s\parallel} &= \frac{\sqrt{\kappa}}{\sqrt{2 + \kappa}} = \sqrt{\frac{R_{\parallel}(\xi)}{3R(\xi)}} \\ c_{s\perp} &\to 1/\sqrt{2} \\ c_{s} \\ c_{s} \\ c_{s\perp} &\to 1/\sqrt{2} \\ c_{s\parallel} \\ c_{s\parallel} &\to 0 \\ c_{s\parallel} \to 0 \\$$

Конус Маха

Конус Маха

M. Kirakosyan, A. Kovalenko, A. Leonidov. Sound propagation and Mach cone in anisotropic hydrodynamics. The European Physical Journal C, 79:434. 2019.

Ударные волны

Будем рассматривать ударные волны сжатия P' > P, S' > S

Сохранение проекции тензора энергии-импульса на нормаль к поверхности разрыва:

Проблемой в теории Израэля-Стюарта является неспособность адекватно описать ударные волны. Описание ударных волн имеет непрерывный характер до достижения определённой критической точки, после которой решения становятся разрывными, как в случае идеальной жидкости.

Изотропный случай

Из уравнения $T_{\mu\nu}N^{\mu}=T'_{\mu\nu}N^{\mu}$ для тензора $T_{\mu\nu}=(\varepsilon+P)U^{\mu}U^{\nu}-Pg^{\mu\nu}$ получим

,

$$v_x = \sqrt{\frac{3\sigma + 1}{3(\sigma + 3)}}, \ v'_x = \sqrt{\frac{\sigma + 3}{3(3\sigma + 1)}}$$

где $\sigma = P'/P$.

Введём также относительную разность скоростей

$$\delta_{\rm iso} = \frac{v_x' - v_x}{v_x} = -\frac{2}{3\sigma + 1}(\sigma - 1)$$

и их произведение

$$\rho_{\rm iso} = v_x v_x' = \frac{1}{3} = c_s^2$$

Граничные случаи

Поперечный случай (нормаль перпендикулярная оси анизотропии):

$$\begin{aligned} v_x(\sigma,\xi) &= \sqrt{\frac{R_{\perp}(3\sigma R + R_{\perp})}{3R(R_{\perp}\sigma + R))}}, \quad v'_x(\sigma,\xi) = \sqrt{\frac{R_{\perp}(R_{\perp}\sigma + R)}{3R(3\sigma R + R_{\perp})}}, \\ \delta_{\perp}(\xi) &= \frac{v'_x - v_x}{v_x} = -(\sigma - 1)\frac{3R - R_{\perp}}{3\sigma R + R_{\perp}} \end{aligned}$$

Продольный случай (нормаль параллельна оси анизотропии):

$$\begin{aligned} v_z(\sigma,\xi) &= \sqrt{\frac{R_{\parallel}(\sigma R + R_{\parallel})}{3R(R_{\parallel}\sigma + R))}}, \quad v'_z(\sigma,\xi) = \sqrt{\frac{R_{\parallel}(R_{\parallel}\sigma + R)}{3R(3\sigma R + R_{\parallel})}}\\ \delta_{\parallel}(\xi) &= \frac{v'_z - v_z}{v_z} = -(\sigma - 1)\frac{3R - R_{\parallel}}{3\sigma R + R_{\parallel}} \end{aligned}$$

Граничные случаи

$$\rho_{\rm iso} = v_x v'_x = \frac{1}{3} = c_s^2 \quad \left\{ \begin{array}{ccc} \rho_{\perp}(\xi) &=& v_x v'_x = \frac{R_{\perp}}{3R} \\ \rho_{\parallel}(\xi) &=& v_z v'_z = \frac{R_{\parallel}}{3R} \end{array} \right. \qquad c_{s\perp}^2 = \frac{R_{\perp}}{3R}, \quad c_{s\parallel}^2 = \frac{R_{\parallel}}{3R}$$

Граничные случаи

$$\delta_{\perp}(\xi) = \frac{v'_x - v_x}{v_x} = -(\sigma - 1)\frac{3R - R_{\perp}}{3\sigma R + R_{\perp}} \qquad \qquad \delta_{\parallel}(\xi) = \frac{v'_z - v_z}{v_z} = -(\sigma - 1)\frac{3R - R_{\parallel}}{3\sigma R + R_{\parallel}}$$

Произвольное направление нормали

Система уравнений на γ, γ', α' с входными параметрами ξ, σ, α :

1.
$$-(3P_{\perp}+P_{\parallel})\cosh\gamma\cosh\vartheta(\sinh\gamma\sin\alpha+\cosh\gamma\sinh\vartheta\cos\alpha)+ +(3P'_{\perp}+P'_{\parallel})\cosh\gamma'\cosh\vartheta'(\sinh\gamma'\sin\alpha+\cosh\gamma'\sinh\vartheta'\cos\alpha)+ +(P_{\perp}-P_{\parallel})\sinh\vartheta\cosh\vartheta\cos\alpha-(P'_{\perp}-P'_{\parallel})\sinh\vartheta'\cosh\vartheta'\cos\alpha=0$$

2.
$$-(3P_{\perp}+P_{\parallel})\cosh\gamma\sinh\vartheta(\sinh\gamma\sin\alpha+\cosh\gamma\sinh\vartheta\cos\alpha) - +(3P'_{\perp}+P'_{\parallel})\cosh\gamma'\sinh\vartheta'(\sinh\gamma'\sin\alpha+\cosh\gamma'\sinh\vartheta'\cos\alpha) + P'_{\perp}\cos\alpha + +(P_{\perp}-P_{\parallel})\cosh\vartheta\cosh\vartheta\cos\alpha - (P'_{\perp}-P'_{\parallel})\cosh\vartheta'\cosh\vartheta'\cos\alpha = 0$$

3.
$$-(3P_{\perp}+P_{\parallel})\sinh\gamma(\sinh\gamma\sin\alpha+\cosh\gamma\sinh\eta\cos\alpha) - P_{\perp}\sin\alpha + +(3P'_{\perp}+P'_{\parallel})\sinh\gamma'(\sinh\gamma'\sin\alpha+\cosh\gamma'\sinh\vartheta'\cos\alpha) + P'_{\perp}\sin\alpha = 0$$

α

χI

α

shock wave

z (beam-axis)

4.
$$\vartheta = \operatorname{arcsinh} [\tanh \gamma \operatorname{ctg} \alpha], \quad \vartheta' = \operatorname{arcsinh} [\tanh \gamma' \operatorname{ctg} \alpha']$$

$$v_x = \frac{u_x}{u_0} = \frac{\tanh \gamma}{\cosh \vartheta} = v \sin \alpha, \qquad v_z = \frac{u_z}{u_0} = \tanh \vartheta = v \cos \alpha,$$
$$v'_x = \frac{u'_x}{u'_0} = \frac{\tanh \gamma'}{\cosh \vartheta'} = v' \sin \alpha', \quad v'_z = \frac{u'_z}{u'_0} = \tanh \vartheta' = v' \cos \alpha'.$$

Преломление потока

Преломление потока

Поведение скоростей

A. Kovalenko, A. Leonidov. Shock waves in relativistic anisotropic hydrodynamics. The European Physical Journal C, 82, 378 (2022)

При рассмотрении системы с постоянной анизотропией мы можем потерять информацию, например, о процессе изотропизации системы.

Пусть ударная волна, нормаль которой направлена под углом α , не отклоняет поток. Тогда получим 3 уравнения на v, v', ξ' .

При $\alpha = \pi/2$ одно из уравнений сводится к

$$R_{\parallel}(\xi^{'}) - R_{\perp}(\xi^{'}) = \frac{R_{\parallel}(\xi) - R_{\perp}(\xi)}{\sigma}$$

При $\alpha = \pi/2$ мы получим следующее уравнение: $R_{\parallel}(\xi') - R_{\perp}(\xi') = \frac{R_{\parallel}(\xi) - R_{\perp}(\xi)}{\sigma}$

Решение уравнения для ξ' всегда будет давать два корня для $\sigma \ge 1$, за исключением случая, когда для $\sigma = 1$ имеем $\xi' = \xi = \xi_{crit}$, где $\xi_{crit} \approx 2.62143$ является решением уравнения

При $\sigma = 1$ ударная волна не существует, что соответствует решению $\xi' = \xi$. Выбирая один из двух корней уравнения при $\sigma > 1$ мы хотим получить решение $\xi' \to \xi$ при $\sigma \to 1$. Таким образом, точка ξ_{crit} разделяет два пространства решений. Если $\xi < \xi_{crit}$, то для непрерывного предела $\sigma \to 1$ необходимо выбрать левое решение $\xi' < \xi_{crit}$, так как только в этом случае выполняется условие $\xi' \to \xi$ при $\sigma \to 1$. И наоборот, если $\xi > \xi_{crit}$, то мы должны выбрать правое решение.

Таким образом, для $\sigma > 1$, при плавном изменении ξ мы теряем непрерывность решения по ξ' всякий раз, когда ξ переходит через точку ξ_{crit} .

Более того, для предела $\xi \to 0$ обнаружим, что левое решение $\xi' \to 0$. Однако для правого решения нет возможности перейти к изотропному пределу $\xi \to 0$, так как мы работаем в другом пространстве решений.

Аналогичное следствие можно получить для уравнений при $\alpha = 0$.

Численными методами можно найти значения ξ_{crit} для любых α .

Поскольку мы выбираем «левое» решение, то значение ξ_{crit} является ограничением сверху.

Разрывные уравнения ударных волн приводят к решению $\xi' < \xi$.

Таким образом, генерация ударных волн данного типа приводит к изотропизации среды.

A. Kovalenko. Critical Point from Shock Waves Solution in Relativistic Anisotropic Hydrodynamics. Preprint arxiv: 2309.11215

Введём возмущение поверхности разрыва: $z - \eta e^{-i(\omega t + kx + ly)} = 0$

Введём возмущение поверхности разрыва: $z - \eta e^{-i(\omega t + kx + ly)} = 0$

$$\begin{split} T^{\mu\nu} &= (\varepsilon + P)U^{\mu}U^{\nu} - Pg^{\mu\nu} \\ U^{\mu} &= (u_0, u_x, u_y, u_z) \\ & \checkmark \\ u_0(t, x, y, z) &= u_0 + \delta u_0(t, x, y, z), \\ u_x(t, x, y, z) &= \delta u_x(t, x, y, z), \\ u_y(t, x, y, z) &= \delta u_y(t, x, y, z), \\ u_z(t, x, y, z) &= u_z + \delta u_z(t, x, y, z), \\ P(t, x, y, z) &= P + \delta P(t, x, y, z). \end{split}$$

Мы хотим исследовать режим, в котором k, l – действительные числа, а Im $\omega > 0$.

Причём будем требовать, чтобы при $z \to \pm \infty$ $\mathbf{W} = (\delta P, \delta u_x, \delta u_y, \delta u_z) \to \mathbf{0}.$

Если в какой-то области это условие выполнено, то в этой области ударная волна является неустойчивой.

A. M. Anile and G. Russo Linear stability for plane relativistic shock waves The Physics of Fluids 30, 1045 (1987)

 $\mathbf{W}(t,x,y,z) = \mathbf{Y}(z)e^{-i(\omega t + kx + ly)}$

Получим уравнения движения для возмущённой задачи

$$A^{\mu}\partial_{\mu}\mathbf{W} = 0 \quad \blacksquare \quad \mathbf{W} = 0 \quad \blacksquare \quad \mathbf{W} = 0 \quad \blacksquare \quad \mathbf{W} = 0$$

Будем считать, что для функции $\mathbf{Y}(z)$ возможно преобразование Лапласа, тогда

$$\widehat{\mathbf{Y}}(q) = \int_0^\infty e^{-qz} \mathbf{Y}(z) dz$$
 для $\Lambda_+ : z > 0$ (после ударной волны)
 $\widehat{\mathbf{Y}}(q) = \int_0^\infty e^{-qz} \mathbf{Y}(-z) dz$ для $\Lambda_- : z < 0$ (до ударной волны)

 $\mathbf{W}(t,x,y,z) = \mathbf{Y}(z)e^{-i(\omega t + kx + ly)}$

Получим уравнения движения для возмущённой задачи

$$A^{\mu}\partial_{\mu}\mathbf{W} = 0 \quad \blacksquare \quad \mathbf{W} = 0 \quad \blacksquare \quad \mathbf{W} = 0 \quad \blacksquare \quad \mathbf{W} = 0$$

Будем считать, что для функции $\mathbf{Y}(z)$ возможно преобразование Лапласа, тогда

$$\widehat{\mathbf{Y}}(q) = \int_0^\infty e^{-qz} \mathbf{Y}(z) dz$$
 для $\Lambda_+ : z > 0$ (после ударной волны)
 $\widehat{\mathbf{Y}}(q) = \int_0^\infty e^{-qz} \mathbf{Y}(-z) dz$ для $\Lambda_- : z < 0$ (до ударной волны)

Тогда получим уравнение вида

$$A_3^{-1}A\widehat{\mathbf{Y}}(m) = \pm i\mathbf{Y}(0), \;\;$$
для Λ_{\pm} $q = \mp im$

Получим характеристическое уравнение

$$(\omega A_0 + kA_1 + lA_2 + i\partial_z A_3)\mathbf{Y}(z) = 0 \qquad \qquad \Delta = \det A = \det (\omega A_0 + kA_1 + lA_2 + mA_3)$$
$$\Delta = \det A = \det (\omega A_0 + kA_1 + lA_2 + mA_3)$$

Решение характеристического уравнения даст двойной корень $m_0 = m_1$ и два корня кубического уравнения:

$$m_{0} = m_{1} = -\frac{\omega}{v},$$

$$m_{2} = \frac{-v\omega(1-c_{s}^{2}) + c_{s}\sqrt{1-v^{2}}\sqrt{(k^{2}+l^{2})(v^{2}-c_{s}^{2}) + \omega^{2}(1-v^{2})}}{v^{2}-c_{s}^{2}},$$

$$m_{3} = \frac{-v\omega(1-c_{s}^{2}) - c_{s}\sqrt{1-v^{2}}\sqrt{(k^{2}+l^{2})(v^{2}-c_{s}^{2}) + \omega^{2}(1-v^{2})}}{v^{2}-c_{s}^{2}}.$$

$$\begin{split} &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{0,1}\leqslant 0, \ \operatorname{Im}m_{0,1}<0 \ \text{ для }\Lambda_{\pm}, \\ &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{2}\leqslant 0, \ \operatorname{Im}m_{2}<0 \ \text{ для }\Lambda_{-}, \\ &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{2}\leqslant 0, \ \operatorname{Im}m_{2}<0 \ \text{ для }\Lambda_{+}, \\ &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{3}\leqslant 0, \ \operatorname{Im}m_{3}<0 \ \text{ для }\Lambda_{-}, \\ &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{3}\geqslant 0, \ \operatorname{Im}m_{3}>0 \ \text{ для }\Lambda_{+}. \end{split}$$

Уравнение после преобразование Лапласа имеет вид:

 $A_3^{-1}A\widehat{\mathbf{Y}}(m) = \pm i\mathbf{Y}(0), \quad$ для Λ_{\pm} $\det(A_3^{-1}A) = (m - m_0)^2(m - m_2)(m - m_3)$

Выражения для $\mathbf{Y}(0)$ можно найти из

 $N_{\mu}T^{\mu\nu} = N_{\mu}T^{'\mu\nu}$

Тогда получим

$$\begin{split} Y^{0}(0) &= \delta P' = -2i\eta\omega(\varepsilon' + P')c_{s}^{2}\frac{(u_{0}u'_{z} - u'_{0}u_{z})(u_{0}u'_{0} - u_{z}u'_{z})}{(c_{s}^{2} - (1 - c_{s}^{2})u'_{z}^{2})u_{z}u_{0}} u'_{z}u'_{0},\\ Y^{1}(0) &= \delta u'_{x} = i\eta k\frac{u_{0}u'_{z} - u'_{0}u_{z}}{u_{0}},\\ Y^{2}(0) &= \delta u'_{y} = i\eta l\frac{u_{0}u'_{z} - u'_{0}u_{z}}{u_{0}},\\ Y^{3}(0) &= \delta u'_{z} = i\eta\omega\frac{(u_{0}u'_{z} - u'_{0}u_{z})(u_{0}u'_{0} - u_{z}u'_{z})}{(c_{s}^{2} - (1 - c_{s}^{2})u'_{z}^{2})u_{z}u_{0}} (u'_{z}^{2} + c_{s}^{2}(1 + u'_{z}^{2}))u'_{0}. \end{split}$$

$$\begin{split} &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{0,1}\leqslant 0, \ \operatorname{Im}m_{0,1}<0 \ \text{ для }\Lambda_{\pm}, \\ &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{2}\leqslant 0, \ \operatorname{Im}m_{2}<0 \ \text{ для }\Lambda_{-}, \\ &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{2}\leqslant 0, \ \operatorname{Im}m_{2}<0 \ \text{ для }\Lambda_{+}, \\ &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{3}\leqslant 0, \ \operatorname{Im}m_{3}<0 \ \text{ для }\Lambda_{-}, \\ &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{3}\gtrless 0, \ \operatorname{Im}m_{3}>0 \ \text{ для }\Lambda_{+}. \end{split}$$

Уравнение после преобразование Лапласа имеет вид:

 $A_3^{-1}A\widehat{\mathbf{Y}}(m) = \pm i\mathbf{Y}(0), \quad$ для Λ_{\pm} $\det(A_3^{-1}A) = (m - m_0)^2(m - m_2)(m - m_3)$

По формуле Крамера получим

$$\widehat{\mathbf{Y}}(m) = \frac{\mathbf{C}_1}{m - m_0} + \frac{\mathbf{C}_2}{m - m_2} + \frac{\mathbf{C}_3}{m - m_3}$$

$$\frac{1}{2i\pi} \int e^{-qz} \frac{1}{\pm iq - m_i} dq \sim e^{\mp im_i z}$$

$$\begin{split} &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{0,1}\leqslant 0, \ \operatorname{Im}m_{0,1}<0 \ \text{ для }\Lambda_{\pm}, \\ &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{2}\leqslant 0, \ \operatorname{Im}m_{2}<0 \ \text{ для }\Lambda_{-}, \\ &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{2}\leqslant 0, \ \operatorname{Im}m_{2}<0 \ \text{ для }\Lambda_{+}, \\ &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{3}\leqslant 0, \ \operatorname{Im}m_{3}<0 \ \text{ для }\Lambda_{-}, \\ &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{3}\leqslant 0, \ \operatorname{Im}m_{3}>0 \ \text{ для }\Lambda_{+}. \end{split}$$

Уравнение после преобразование Лапласа имеет вид:

 $A_3^{-1}A\widehat{\mathbf{Y}}(m) = \pm i\mathbf{Y}(0),$ для Λ_{\pm} $\det(A_3^{-1}A) = (m - m_0)^2(m - m_2)(m - m_3)$

По формуле Крамера получим

$$\widehat{\mathbf{Y}}(m) = \frac{\mathbf{C}_1}{m - m_0} + \frac{\mathbf{C}_2}{m - m_2} + \frac{\mathbf{C}_3}{m - m_3}$$

$$\frac{1}{2i\pi} \int e^{-qz} \frac{1}{\pm iq - m_i} dq \sim e^{\mp im_i z}$$

$$\begin{split} &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{0,1}\leqslant 0, \ \operatorname{Im}m_{0,1}<0 \ \text{ для }\Lambda_{\pm}, \\ &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{2}\leqslant 0, \ \operatorname{Im}m_{2}<0 \ \text{ для }\Lambda_{-}, \\ &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{2}\leqslant 0, \ \operatorname{Im}m_{2}<0 \ \text{ для }\Lambda_{+}, \\ &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{3}\leqslant 0, \ \operatorname{Im}m_{3}<0 \ \text{ для }\Lambda_{-}, \\ &\operatorname{Re}\omega\geqslant 0, \ \operatorname{Im}\omega>0\Leftrightarrow\operatorname{Re}m_{3}\leqslant 0, \ \operatorname{Im}m_{3}>0 \ \text{ для }\Lambda_{+}. \end{split}$$

Для
$$\Lambda_ (z < 0)$$
 получим $\mathbf{C}_1, \mathbf{C}_2, \mathbf{C}_3 = 0$

Для Λ_+ (z > 0) получим $| \mathbf{C}_3 = 0 |$

Из уравнения $C_3 = 0$ получаем условия на волновые числа Из характеристического уравнения получаем область значений волновых чисел

Из уравнения $C_3 = 0$ получаем условия на волновые числа

Из характеристического уравнения получаем область значений волновых чисел

Мы найдём, что уравнение $\mathbf{C}_3 = \mathbf{0}$ эквивалентно уравнению

 $\varphi^2 - 2v'\varphi - (1 - v'^2) = 0$

Где $\varphi = \Omega/m, \Omega = \omega{+}vm$.

Решениями этого уравнения являются два действительных корня

 $\varphi_{1,2} = v' \pm 1$

Из уравнения $C_3 = 0$ получаем условия на волновые числа

Из характеристического уравнения получаем область значений волновых чисел

Мы найдём, что уравнение $C_3 = 0$ эквивалентно уравнению

 $\varphi^2 - 2v'\varphi - (1 - v'^2) = 0$ Где $\varphi = \Omega/m, \Omega = \omega + vm$.

Решениями этого уравнения являются два действительных корня

 $\varphi_{1,2} = v' \pm 1$

Характеристическое уравнение

Для анизотропного случая будем иметь, как и ранее, два граничных случая:

- Нормаль параллельна оси анизотропии
- Нормаль перпендикулярна направлению анизотропии

В первом режиме имеем почти полную аналогию с изотропным случаем. Характеристическое уравнение даёт корни:

$$m_{0,1} = -\frac{\omega}{v},$$

$$m_2 = \frac{1 - v^2}{4(v^2 - c_{s\parallel}^2)} \left(-4v\omega(1 - c_{s\parallel}^2) + 2\sqrt{2}\sqrt{2c_{s\parallel}^2\omega^2 + \frac{(1 - c_{s\parallel}^2)(k^2 + l^2)(v^2 - c_{s\parallel}^2)}{1 - v^2}} \right)$$

$$m_{3} = \frac{1 - v^{2}}{4(v^{2} - c_{s\parallel}^{2})} \left(-4v\omega(1 - c_{s\parallel}^{2}) - 2\sqrt{2}\sqrt{2c_{s\parallel}^{2}\omega^{2} + \frac{(1 - c_{s\parallel}^{2})(k^{2} + l^{2})(v^{2} - c_{s\parallel}^{2})}{1 - v^{2}}} \right)$$

где

$$c_{s\parallel}=\frac{R_{\parallel}}{3R}$$

В конечном итоге получаем тот же результат, что и в изотропном случае.

Для анизотропного случая будем иметь, как и ранее, два граничных случая:

- Нормаль параллельна оси анизотропии
- Нормаль перпендикулярна направлению анизотропии

Во втором режиме нетривиальная часть характеристического уравнения представляет собой кубическое уравнение. Корни данного уравнения исследуются графически.

Несмотря на то, что нормаль к ударной волне перпендикулярна оси анизотропии, данное выделенное направление всё равно проявляет себя в виде кубического уравнения на волновые числа.

Дальнейшее исследование и анализ приводят к тому же уравнению на ${\mathcal Q}$.

Для анизотропного случая с произвольным полярным углом наклона нормали к поверхности разрыва вычисления производились численно.

Графики действительных и мнимых частей характеристического уравнения имеют вид:

A. Kovalenko,

Linear Stability of Shock Waves in Ultrarelativistic Anisotropic Hydrodynamics Eur. Phys. J. C 83, 754 (2023).

Выводы

- Получено волновое уравнение, из которого следуют две различные скорости распространения звука в среде ввиду разности продольного и поперечного давлений.
- Аналитически показано, что конус Маха в рамках релятивистской анизотропной гидродинамики является ассиметричным. Выведены выражения для двух углов Маха случае постоянного параметра анизотропии.
- Получены аналитические решения для ударных волн сжатия в поперечном и продольном случаях расположения нормали к поверхности разрыва относительно оси пучка. Показано, что имеет место ослабление ударной волны в поперечном случае и её усиление в продольном.
- При неизменном параметре анизотропии для произвольного полярного угла было показано, что в рамках релятивистской анизотропной гидродинамики происходит преломление прошедшего через поверхность разрыва потока в сторону оси анизотропии. Также было показано, что для больших значений анизотропии и большом отношении изотропных давлений имеет место ускорение потока после прохождения поверхности разрыва, что указывает на проявление некоторых свойств волн разрежения. Что, в свою очередь, может указывать на возможные ограничения параметров задачи.
- Было показано, что в случае изменяемой анизотропии и отсутствии явления преломления потока возникает разделение пространства решений. Адекватное описание становится возможным при наложении ограничения на параметр анизотропии. Также было показано, что генерация ударных волн может привести к изотропизации системы.

Список публикаций

- M. Kirakosyan, A. Kovalenko, A. Leonidov. Sound propagation and Mach cone in anisotropic hydrodynamics. The European Physical Journal C, 79:434. (2019)
- 2. A. Kovalenko, A. Leonidov. Shock waves in relativistic anisotropic hydrodynamics. The European Physical Journal C, 82, 378 (2022)
- 3. A. Kovalenko. Stability of Shock Waves in Anisotropic Hydrodynamics. Physics of Particles and Nuclei, 52, 569–570 (2021)
- 4. A. Kovalenko. Linear Stability of Shock Waves in Ultrarelativistic Anisotropic Hydrodynamics. European Physical Journal C, 83, 754 (2023)
- 5. A. Kovalenko. Critical Point from Shock Waves Solution in Relativistic Anisotropic Hydrodynamics. Preprint arxiv: 2309.11215